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a b s t r a c t

This paper presents a comparative study on the newly introduced weak Galerkin finite
element methods (WGFEMs) with the widely accepted discontinuous Galerkin finite el-
ement methods (DGFEMs) and the classical mixed finite element methods (MFEMs) for
solving second-order elliptic boundary value problems. We examine the differences, sim-
ilarities, and connection among these methods in scheme formulations, implementation
strategies, accuracy, and computational cost. The comparison and numerical experiments
demonstrate that WGFEMs are viable alternatives to MFEMs and hold some advantages
over DGFEMs, due to their properties of local conservation, normal flux continuity, no need
for penalty factor, and definiteness of discrete linear systems.

Published by Elsevier B.V.

1. Introduction

For convenience of presentation, we concentrate on two-dimensional elliptic boundary value problems formulated as
∇ · (−K∇p) ≡ ∇ · u = f , x ∈ Ω,

p = pD, x ∈ Γ D,

u · n = uN , x ∈ Γ N ,

(1)

where Ω ⊂ R2 is a bounded polygonal domain, p the primal unknown, K a conductivity or permeability tensor that is uni-
formly symmetric positive-definite, f a source-term, pD, uN respectively Dirichlet and Neumann boundary data, n the unit
outward normal vector on ∂Ω , which has a non-overlapping decomposition Γ D

∪ Γ N .
When Γ D

≠ ∅, the problem has a unique solution. When Γ D
= ∅, a consistency condition

Ω

fdx =


Γ N

uNds

is specified to ensure uniqueness of the solution.
The model problem (1) arises from many practical problems, for example, flow in porous media, heat or electrical con-

duction in composite materials. In the context of porous medium flow, p is the pressure for a single-phase steady flow,
K is the ratio of permeability and fluid viscosity, and u = −K∇p is the Darcy velocity. In the context of heat (electric)
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conduction, p is the temperature (electric potential), K is the thermal (electric) conductivity, and u = −K∇p is heat (elec-
tric) flux. All these applications call for accurate, efficient, and robust numerical approximations of not only the primal
variable (pressure, temperature, or electrical potential) but also the flux (Darcy velocity, heat or electrical flux).

There have been a variety of numerical methods for the model problem (1): the continuous Galerkin finite element
methods (CGFEMs), the DGFEMs, and the MFEMs, in addition to the finite difference methods and finite volume methods.
All these numerical methods result in large-scale discrete linear systems, which are solved directly or iteratively. Besides
accuracy, efficiency, and robustness of numericalmethods, physical properties such as local conservation and flux continuity
are also major concerns in practical applications mentioned above.

One could say there are already plenty of numerical methods for even just a simple elliptic boundary value problem like
(1). Is there any need for developing new numerical methods for an already well studied model problem? What is it good for with
the new WGFEMs?

To answer the above questions, let us briefly examine the main features of the existing numerical methods.
(i) The CGFEMs are known as lacking of ‘‘local conservation’’, even though they are conceptually simple and have relatively

less unknowns [1,2].
(ii) The DGFEMs are locally conservative but there is no continuity in the DG flux [3]. DGFEMs have flexibility in handling

complicated geometry but proliferate in numbers of unknowns. Choosing problem-dependent penalty factors is a
drawback for practical use of DGFEMs.

(iii) The MFEMs approximate the primal variable and flux simultaneously using finite element pairs that satisfy the inf–sup
condition. But the resulting indefinite linear systems (saddle-point problems) require special solvers [4,5].

The weak Galerkin finite element methods introduced in [6] adopt a completely different approach. They rely on novel
concepts such as the weak gradient and discrete weak gradients. As is well known, the variational formulation of a second-
order elliptic problem relies on the duality of the classical gradient operator. Locality of a finite element space implies local
conservation and relative independence of elementwise shape functions. However, shape functions in element interiors are
related to their values on the element interfaces (through integration by parts). The weak gradient operator characterizes
exactly this connection, see Eq. (12) in Section 3. Discrete weak gradients inherit the connection for finite dimensional
(Galerkin type) polynomial approximation subspaces, see Eq. (14) in Section 3.

As novel WGFEMs are being developed for different types of problems, e.g., second order elliptic problems, bi-harmonic
problems, and Stokes flow, there arises a need for comparing WGFEMs with the existing numerical methods, especially
the classical mixed finite element methods and the intensively investigated DGFEMs. This paper addresses such a need by
providing fair comparison of these three types of methods. We compare these methods on scheme formulation, accuracy
and error estimates, numbers of unknowns and condition numbers, implementation issues, and desired physical properties.

The rest of this paper is organized as follows. Section 2 presents preliminaries about RT0, BDM1 finite elements that are
common to MFEMs, WGFEMs, and DGFEMs postprocessing, especially for flux calculations. Section 3 presents WGFEMs,
DGFEMs, MFEMs and their implementations. Section 4 presents detailed comparison ofWGFEMswith DGFEMs andMFEMs.
Section 5 presents numerical results to further examine the differences among thesemethods. Section 6 concludes the paper
with some remarks.

2. Preliminaries: bases for RT , BDM finite element spaces

The divergence form of the second order elliptic problem in (1) indicates the importance of the space H(div, Ω) and
H(div)-conforming finite element spaces. We define

H(div; Ω) =

v ∈ L2(Ω)2 : ∇ · v ∈ L2(Ω)


,

H0,N(div; Ω) =

v ∈ H(div; Ω) : v · n = 0 on Γ N

,

HuN ,N(div; Ω) =

v ∈ H(div; Ω) : v · n = uN on Γ N

.

Raviart–Thomas (RT) elements and Brezzi–Douglas–Marini (BDM) elements are among the most frequently used [7,3,5,8,
9,6]. In this section, we briefly discuss some interesting properties of the basis functions for these elements.

2.1. Edge-based bases for RT0 and BDM1

Barycentric coordinates are enjoyed by practitioners of FEMs. Let T = ∆P1P2P3 be a triangle oriented counterclockwise
and |T | be its area. For any point P(x, y) on the triangle, let |Ti|(i = 1, 2, 3) be the areas of the small triangles when Pi(xi, yi)
are respectively replaced by P (see Fig. 1). Then λi = |Ti|/|T |(i = 1, 2, 3) are the barycentric coordinates. Clearly 0 ≤ λi ≤ 1
and λ1 + λ2 + λ3 = 1.

It is clear that λi(x, y)(i = 1, 2, 3) are also the Lagrangian P1 basis functions, whose gradients are

∇λ1 = ⟨y2 − y3, x3 − x2⟩ /(2|T |),
∇λ2 = ⟨y3 − y1, x1 − x3⟩ /(2|T |),
∇λ3 = ⟨y1 − y2, x2 − x1⟩ /(2|T |).

(2)

Their integrals are nicely expressed in the following lemma.



348 G. Lin et al. / Journal of Computational and Applied Mathematics 273 (2015) 346–362

Fig. 1. Barycentric coordinates λi(i = 1, 2, 3) for a generic triangle.

Fig. 2. RT0 edge-based local basis functions.

Lemma. Let α, β, γ be nonnegative integers. Then
T
λα
1λ

β

2λ
γ

3 dT =
2|T |α!β!γ !

(α + β + γ + 2)!
. (3)

Geometric information of triangles is used to construct local and global basis functions for RT0, RT1, BDM1 elements.
RT0 edge-based basis functions use areas and edge lengths of triangles (see Fig. 2). Let ei(i = 1, 2, 3) be the edge opposite

to vertex Pi and

φi =
|ei|
2|T |

(P − Pi), i = 1, 2, 3. (4)

One can easily prove that [7]
φi · nj = δi,j, (5)

∇ · φi = |ei|/|T |, i = 1, 2, 3, (6)
where nj is the unit outer normal on edge ej and δij is the Kronecker symbol.

BDM1 edge-based basis functions use internal angles, tangential vectors, and barycentric coordinates of triangles. Let θi
be the internal angle at vertex Pi and ti be the unit tangential vector on edge ei following the counterclockwise orientation.
Clearly, ni can be obtained by a 90◦ clockwise rotation of ti. We have six edge-based basis local functions for BDM1 (see
Fig. 3):

Φ1,s =
λ2t3

sin(θ2)
, Φ1,e = −

λ3t2
sin(θ3)

,

Φ2,s =
λ3t1

sin(θ3)
, Φ2,e = −

λ1t3
sin(θ1)

,

Φ3,s =
λ1t2

sin(θ1)
, Φ3,e = −

λ2t1
sin(θ2)

.

(7)

It is clear that
(i) Φi,s · nj = 0 and Φi,e · nj = 0 for i ≠ j.
(ii) Φi,s · ni and Φi,e · ni are linear on edge ei.
(iii) ∇ · Φi,s, ∇ · Φi,e can be calculated using (2) and (7).

Items (i) and (ii) are due to either orthogonality of the normal and tangential vectors or vanishing of a barycentric coordinate
on the opposite edge.



G. Lin et al. / Journal of Computational and Applied Mathematics 273 (2015) 346–362 349

Fig. 3. Triangle geometric information used for BDM1 edge-based local basis functions.

Theorem 0. There exists hierarchy among RT0, RT1, BDM1 spaces as shown below [5]

RT0 ⊂ BDM1 ⊂ RT1 ⊂ · · · .

This is further reflected in the edge-based local basis functions. In particular, the following holds

φ
RT0
i =

1
2


Φ

BDM1
i,s + Φ

BDM1
i,e


, i = 1, 2, 3. (8)

Proof. We consider edge e1. It is clear that

|e1|
sin(θ1)

=
|e2|

sin(θ2)
=

|e3|
sin(θ3)

.

So we have |e2| sin(θ3) = |e3| sin(θ2) = c , where for convenience c is used to name the same constant. Note that |T | =

|e3||e1| sin(θ2) = |e1||e2| sin(θ3). Taking coefficients 1
2 = cs = ce =

|e1|
2|T |

c and using the facts that |e3|t3 = P2 − P1,
−|e2|t2 = P3 − P1, we have

csΦ
BDM1
1,s + ceΦ

BDM1
1,e =

|e1|
2|T |

(λ2P2 + λ3P3 − λ2P1 − λ3P1)

=
|e1|
2|T |

(λ2P2 + λ3P3 + λ1P1 − P1) =
|e1|
2|T |

(P − P1) = φ
RT0
1 ,

where the facts λ1 + λ2 + λ3 = 1 and λ1P1 + λ2P2 + λ3P3 = P have been used.

2.2. Normalized bases for RT0, BDM1, RT1 finite element spaces

Let (xc, yc) be the element center and X = x − xc, Y = y − yc . The normalized local basis for triangular RT0 elements
refers to [9,10]

1
0


,


0
1


,


X
Y


. (9)

The normalized local basis functions for triangular BDM1 elements are
1
0


,


X
0


,


Y
0


,


0
1


,


0
X


,


0
Y


. (10)

Similarly, the normalized local basis for triangular RT1 elements is
1
0


,


X
0


,


Y
0


,


0
1


,


0
X


,


0
Y


,


X2

XY


,


XY
Y 2


. (11)

The hierarchy among these basis functions are trivial. It has been observed in [9] that the edge-based functions are
convenient for implementing MFEMs, whereas the normalized basis functions are convenient for implementing WGFEMs.

3. WG, DG, MFEM and their implementations

LetEh be a conformingmesh onΩ ⊂ R2.WeuseΓh to denote the set of all edges,Γ I
h the set of all interior edges,Γ D

h the set
of edges on the Dirichlet boundary,Γ N

h the set of edges on the Neumann boundary. Accordinglywe haveΓh = Γ I
h ∪Γ D

h ∪Γ N
h .
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3.1. WGFEMs and implementation

The weak Galerkin finite element methods were first developed in [6] based on discrete weak gradients, which approx-
imate the weak gradient operator.

3.1.1. Discrete weak gradients and weak finite element spaces
Let E be a triangle or rectangle with interior E◦ and boundary E∂

:= ∂E.
A weak function on E refers to a pair of scalar-valued functions v = {v◦, v∂

} such that v◦
∈ L2(E◦) and v∂

∈ H
1
2 (∂E).

Here v◦ can be understood as the value of v in the interior of E, whereas v∂ is the value of v on the boundary of E. Note that
v∂ might not be the trace of v◦, should a trace be defined.

For any weak function v, itsweak gradient ∇wv is defined (interpreted) as a linear functional on H(div, E):

(∇wv,w) =


∂E

v∂(w · n)ds −


E
v◦(∇ · w)dE, ∀w ∈ H(div, E). (12)

Let P l(E◦) be the space of polynomials on E◦ with degree atmost l ≥ 0 and Pm(∂E) be the space of polynomials on ∂E with
degree at mostm ≥ 0. A discrete weak function is a weak function v = {v◦, v∂

} such that v◦
∈ P l(E◦) and v∂

∈ Pm(∂E). A
discrete weak function space on E is defined as

W (E, l,m) = {v = {v◦, v∂
} : v◦

∈ P l(E◦), v∂
∈ Pm(∂E)}. (13)

Let n be any nonnegative integer and Pn(E)2 be the space of vector-valued polynomials with degree at most n. Let V (E, n)
be a subspace of Pn(E)2. For any v ∈ W (E, l,m), its discrete weak gradient is so defined that ∇w,dv ∈ V (E, n) is the unique
solution of

E
∇w,dv · wdE =


∂E

v∂(w · n)ds −


E
v◦(∇ · w)dE, ∀w ∈ V (E, n). (14)

For later use, we define a projection operator Qh = (Q ◦

h ,Q ∂
h ) into a discrete weak function space, where Q ◦

h is the
L2-projection into the function space on E◦ and Q ∂

h is the L2-projection into the function space on E∂ .
Patching all elementwise discrete weak function spaces over the mesh Eh, we obtain weak finite element spaces

Sh(l,m) = {v = {v◦, v∂
} : v|E ∈ W (E, l,m) ∀E ∈ Eh}, (15)

S0h (l,m) = {v = {v◦, v∂
} ∈ Sh(l,m), v∂

|∂E∩Γ D = 0 ∀E ∈ Eh}. (16)

For the WGFEMs to work well, two properties should be satisfied [6]:

• Property P1. For any v ∈ Sh(l,m) and any E ∈ Eh, if∇w,dv = 0 on E, then theremust be v◦
= const on E◦ and v∂

= const
on ∂E.

• Property P2. For u ∈ Hs(Ω), s ≥ 1, let Qhu ∈ Sh(l,m) be an interpolation or projection of u. Then the discrete weak
gradient of Qhu should be a good approximation of ∇u.

Here is a list of weak finite element spaces that satisfy the above properties [9,11,6].

• The lowest orderWG (P0, P0, RT0) for triangular meshes consists of weak shape functions that are constants on elements
in a triangular mesh and constants on edges in the mesh. Their discrete weak gradients are in the Raviart–Thomas space
RT0(E) for each triangle E in the mesh.

• WG (P0, P0, RT[0]) consists of weak shape functions that are constants on elements in a rectangular mesh and constants
on edges in the mesh. Their discrete weak gradients are in the Raviart–Thomas space RT[0](E) for each rectangle E in the
mesh.

• WG (P0, P1, BDM1) for triangular meshes.
• Higher order WG (Pl, Pl, RTl) on triangular meshes and WG (Pl, Pl, RT[l]) on rectangular meshes for any integer l ≥ 1.
• WG (P0, P0, RT0) for tetrahedral meshes in 3-dim as used in [12]. Such an element has constant basis functions on the

interior of a tetrahedron and each of its four triangular faces but has discrete weak gradients in the 3-dim RT0 space.
Similar higher order WG elements can be established for tetrahedral and 3-dim rectangular meshes.

3.1.2. Weak Galerkin finite element scheme for elliptic BVPs
We define bilinear and linear forms on the WG finite element spaces as

Ah(ph, q) :=


E∈Eh


E
K∇w,dph · ∇w,dqdE, (17)

F (q) :=


E∈Eh


fq◦dE −


γ∈Γ N

h


γ

uNqds. (18)
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Weak Galerkin Finite Element Scheme reads as: Seek ph = {p◦

h, p
∂
h} ∈ Sh(l,m) such that p∂

h |Γ D = Q ∂
h pD and

Ah(ph, q) = F (q), ∀q = {q◦, q∂
} ∈ S0h (l,m). (19)

After ph is obtained from solving (19), one computes the WG flux as follows
uh = Rh(−K∇w,dph), (20)

where Rh is the local L2 projection onto V (E, n).
We define norms of the error as follows

∥p − p◦

h∥
2
L2(Ω)

:=


E∈Eh


E
|p − p◦

h|
2dE, (21)

∥Q ◦

h p − p◦

h∥
2
L2(Ω)

:=


E∈Eh


E
|Q ◦

h p − p◦

h|
2dE, (22)

∥u − uh∥
2
L2(Ω)

=


E∈Eh


E
|u − uh|

2dE. (23)

Theorem 1. Let (p,u) be the exact solutions to (1). If the solutions are sufficiently smooth, i.e., there is an integer m ≥ 2 such
that p ∈ Hm(Ω) and u ∈ Hm−1(Ω)2, then

∥p − p◦

h∥L2(Ω) = O(hr0), ∥Q ◦

h p − p◦

h∥L2(Ω) = O(hr0+1), (24)

∥u − uh∥L2(Ω) = O(hr1), (25)

where r0 = min(m, k0), r1 = min(m − 1, k1) and k0, k1 are integers related to the WG finite elements being used. For
(P0, P0, RT0) and (P0, P0, RT[0]), we have k0 = k1 = 1; for (P1, P1, RT1) and (Q1, P1, RT[1]), we have k0 = k1 = 2; for
(P0, P1, BDM1) and (Q0, P1, BDM[1]), we have k0 = 1, k1 = 2. If the solutions have low regularity, that is, p ∈ H1+s(Ω),u ∈

Hs(Ω)2 for some s ∈ ( 1
2 , 1), then

∥p − p◦

h∥L2(Ω) = O(hr0), ∥Q ◦

h p − p◦

h∥L2(Ω) = O(h2r0), (26)

∥u − uh∥L2(Ω) = O(hr1), (27)

where r0 = min(s, k0), r1 = min(s, k1) but k0, k1 are the same as above.

Theorem 2 (Local Conservation). Let E be any element in the mesh Eh. Then
∂E

uh · nds =


E
fdE. (28)

Theorem 3 (Continuity of Normal Flux). Let γ ∈ Γ I
h be an interior edge shared by two elements E1, E2, ni be the outer normal of

element Ei(i = 1, 2) on γ , and u(i)
h be the numerical flux on element Ei(i = 1, 2). Then

γ

u(1)
h · n1ds =


γ

u(2)
h · n2ds. (29)

For Theorem 1, when the solutions are sufficiently smooth, the error estimates can be derived from the analysis in [6].
When the solutions have low regularity, the error estimates can be derived using the techniques presented in [13]. The proof
of Theorem 3 involves the duality of the basis functions on edges. This is one of the places where we see admissibility ofWG
finite elements.

3.1.3. Implementation of WGFEMs
Here is a typical procedure for implementing WGFEMs.

(1) Choosing an appropriate type of WG finite elements;
(2) Computing the discrete weak gradients of the chosen WG basis functions;
(3) Computing local stiffness matrices;
(4) Assemble the elementwise stiffness matrices into a global stiffness matrix to obtain a symmetric positive-definite

discrete linear system;
(5) Solving the linear system to obtain a numerical approximation to the primal variable and then use (20) to compute the

WG flux.

For more details, see [9,11]. Note that when K is a constant scalar on each element, the local L2 projection Rh in (20) is not
needed.
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Notice that for higher order WG elements, one has to solve small-size dense linear systems to obtain the discrete weak
gradients of the higher order WG basis functions. For example, when WG (P2, P2, RT2) elements are used, there will be 12
WG basis functions for each triangle, and their discrete weak gradients are in RT2, which in turn has 15 basis functions. Then
twelve order 15 linear systems need to be solved.

To address the above issue, the Schur complement technique can be used to reduce the computational cost of solving the
global sparse discrete linear system. Theoretically, hybridization can be applied when formulating the WGFEM schemes so
that interior unknowns are cast onto the interface unknowns and the degrees of freedom is reduced for higher order WG
elements [14].

3.2. MFEMs and implementation

The classical mixed finite element methods (MFEMs) have been used for many problems including the prototype (1) for
second-order elliptic boundary value problems. InMFEMs, the primal variable and its flux are approximated simultaneously.
This is based on rewriting (1) as a system of first-order partial differential equations as follows [5]

K−1u + ∇p = 0, x ∈ Ω,
∇ · u = f , x ∈ Ω,

p = pD, x ∈ Γ D,

u · n = uN , x ∈ Γ N .

(30)

The mixed weak formulation for (1) is: Seek u ∈ HuN ,N(div, Ω) and p ∈ L2(Ω) such that the following hold


Ω

(K−1u) · v −


Ω

p(∇ · v) = −


ΓD

pDv · n, ∀v ∈ H0,N(div, Ω),

−


Ω

(∇ · u)q = −


Ω

fq, ∀q ∈ L2(Ω).

(31)

MFEMs are based on H(div)-conforming finite elements and the inf–sup condition. Denote V = H(div; Ω),W = L2(Ω).
Let Vh ⊂ V andWh ⊂ W be a pair of finite element spaces for the flux and primal variable respectively. The inf–sup condition
requires that [5]

inf
q∈Wh

sup
v∈Vh

B(v, q)
∥v∥V∥q∥W

> 0. (32)

Let Uh = Vh ∩ HuN ,N(div; Ω) and V 0
h = Vh ∩ H0,N(div; Ω). A mixed finite element scheme can be formulated as: Seek

uh ∈ Uh and ph ∈ Wh such that

E∈Eh


E
(K−1uh) · vdE −


E∈Eh


E
ph∇ · vdE = −


γ∈Γ D

h


γ

pDv · nds, ∀v ∈ V 0
h ,

−


E∈Eh


E
(∇ · uh)qdE = −


E∈Eh


E
fqdE, ∀q ∈ Wh.

(33)

Some error estimates for MFEMs are given in [5] when p has integer-order regularity. However, one can derive error
estimates for p ∈ H1+s(Ω)(s > 1

2 ) as follows

∥p − ph∥L2 = O(hs), (34)

∥u − uh∥L2 = O(hs). (35)
It is well known that MFEMs result in indefinite discrete linear systems that require special solvers, e.g., the Uzawa

algorithm [4,5].
There are many element pairs that satisfy the inf–sup condition and hence could be used in the above mixed finite

element scheme. The commonly used are the lowest-order Raviart–Thomas RT0 elements for triangular meshes and RT[0]
elements for rectangular meshes. In each case, the pressure is approximated by elementwise constants, whereas the flux is
approximated from the RT0 or RT[0] space.

MFEM RT0 implementation on triangular meshes exemplifies the strategies needed for efficient implementation. As
discussed in Section 2, one could use formula (4) to construct three edge-based local basis functions φi on each triangular
element T . There are signs σi = ±1 (i = 1, 2, 3) for these edges. These local basis functions glued together yield the global
edge-based basis functions for RT0(Eh).

For ease of implementation, we assume the permeability K is a constant 2 × 2 matrix on each element. Thus so is the
inversematrixK−1. Corresponding to the first term in the first equation of (33) is a local stiffnessmatrixM on each triangular
element:

M =


T
(K−1φj) · φidT


1≤i,j≤3

.
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Then we have

M =
1

48|T |
C ′B′(A ⊗ K−1)BC, (36)

where

A =

2 1 1
1 2 1
1 1 2


, B =

P1 − P1 P1 − P2 P1 − P3
P2 − P1 P2 − P2 P2 − P3
P3 − P1 P3 − P2 P3 − P3


,

C = diag (σ1|e1|, σ2|e2|, σ3|e3|) ,

Pi (i = 1, 2, 3) are the three vertices oriented counterclockwise, |T | the triangle area, |ei| the edge length, σi the aforemen-
tioned sign. Clearly, the 3-by-3 matrix A is related to the Gram matrix of λi(i = 1, 2, 3) for the triangle T . Formula (36)
includes the special case K = I2 discussed in [7].

MFEM BDM1 implementation on triangular meshes is similar to MFEM RT0 implementation. But attention needs to be
paid to the assembly process. For an interior edge shared by two elements, we assume its normal vector points from the
1st element to the 2nd element. Note that there are two normal flux unknowns on this edge. If the counterclockwise orien-
tation is adopted on each element, then for the two rows and two columns in the stiffness matrix of the 2nd element that
correspond to the two flux unknowns on this edge, we swap their positions and change their signs (1 → −1, −1 → 1),
while assembling them into the global stiffness matrix.

3.3. DGFEMs, projected flux, and implementation

The discontinuous Galerkin finite element methods have been intensively investigated recently. In DGFEMs, discontinu-
ous shape functions are adopted on different elements, so interior penalty is usually introduced to enforce weak continuity
across the inter-element boundaries.

Let k ≥ 1 be an integer and E ∈ Eh. By convention, Pk(E) consists of polynomials on E with degree at most k. We define

V k
h = {v : v|E ∈ Pk(E) ∀E ∈ Eh}

and use it as a DG finite element space. Averages and jumps of scalar and vector quantities are defined in the usual way,
see [3,2].

3.3.1. DG schemes for the primal variable
For the boundary value problem (1), a DG scheme is to seek ph ∈ V k

h such that [2]

Ah(ph, q) = F (q), ∀q ∈ V k
h , (37)

where

Ah(ph, q) =


E∈Eh


E
K∇ph∇qdE −


γ∈Γ I

h∪Γ D
h


γ

{K∇ph · n}[q]ds + β


γ∈Γ I
h∪Γ D

h


γ

{K∇q · n}[ph]ds

+


γ∈Γ I

h

αγ

hγ


γ

[ph][q]ds +


γ∈Γ D

h

αγ

hγ


γ

phqds, (38)

F (q) =


E∈Eh


E
fqdE −


γ∈Γ N

h


γ

uNqds + β

γ∈Γ D

h


γ

K∇q · npDds +


γ∈Γ D

h

αγ

hγ


γ

pDqds. (39)

Here αγ > 0 is a penalty factor on an edge γ ∈ Γh and β is a formulation parameter [2]. Depending on the choice of β ,
one ends up with the symmetric interior penalty Galerkin (SIPG) for β = −1, the nonsymmetric interior penalty Galerkin
(NIPG) for β = 1, and the incomplete interior penalty Galerkin (IIPG) for β = 0.

It is well known that the NIPG scheme is stable for any positive penalty factors. For the SIPG scheme to be stable, the
penalty factors need to be large enough. This is one drawback of the DGFEMs, since choosing penalty factors are usually
problem-dependent [15]. Note also that SIPG has optimal order convergence in the L2-norm, whereas NIPG has only subop-
timal order convergence (in the L2-norm) when the approximating polynomials are even order [16].

To avoid the inconvenience of choosing penalty factors in the DGFEMs, the weak over-penalization technique is investi-
gated in [17] and a series of follow-up work. In particular, the weakly over-penalized symmetric interior penalty (WOPSIP)
formulation maintains the symmetric positive-definiteness in the discrete linear system. This results in large condition
numbers, but some nice and simple preconditioners can be constructed [17].

3.3.2. Projected flux for DGFEMs
The elementwise DG numerical flux is obtained via

UDG
h = −K∇pDGh , ∀E ∈ Eh. (40)
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It is locally conservative on each element. This can be proved by simply setting q = 1 on an element E and zero on all
other elements in (38) and (39). However, the numerical flux defined in (40) does not have a continuous normal component
on element interfaces, as pointed out in [3]. This leads to nonphysical oscillations, if the DG flux is coupled to a transport
solver in a straightforward manner. This could make particle tracking difficult or impossible, if the DG velocity is used in a
characteristic-based transport solver.

In view of the features and usefulness of the H(div) finite elements, it is natural to establish a postprocessing procedure
to project a DG flux into any H(div) finite element space, e.g., a RT or BDM type space.

Local RTk−1-projection of the DG flux. Let E ∈ Eh be a triangular element with three edges γi(i = 1, 2, 3). For an integer
k ≥ 1, seek U∗

h ∈ RTk−1(E) such that
γi

(U∗

h · nγi)φ =


γi

({UDG
h } · nγi)φ, ∀φ ∈ Pk−1(γi), i = 1, 2, 3, (41)

E
U∗

h · Φ =


E
UDG

h · Φ, ∀Φ ∈ Pk−2(E)2 (if k ≥ 2). (42)

Local BDMk−1-projection of the DG flux [3]. Let E ∈ Eh be a triangular element with three edges γi(i = 1, 2, 3). For an
integer k ≥ 2, define

Mk(E) = {φ ∈ Pk(E) : φ|∂E = 0},
∇

⊥φ = (∂yφ, −∂xφ).

Seek U∗

h ∈ BDMk−1(E) such that
γi

(U∗

h · nγi)φ =


γi

({UDG
h } · nγi)φ, ∀φ ∈ Pk−1(γi), i = 1, 2, 3, (43)

E
U∗

h · ∇φ =


E
UDG

h · ∇φ, ∀φ ∈ Pk−2(E), (44)
E
U∗

h · ∇
⊥φ =


E
UDG

h · ∇
⊥φ, ∀φ ∈ Mk(E). (45)

For post-processing of the DG flux, the BDM finite element spaces are preferred, ‘‘because they nicelymatch in dimension
with the space of velocities generated by the DG method’’ [3]. It was shown in [3] that the new numerical flux U∗

h obtained
from solving (43)–(45) has the following properties:
(i) It is locally (elementwise) conservative

∂E
U∗

h · nE =


E
f , ∀E ∈ Eh.

(ii) It has a continuous normal component on element interfaces.
(iii) The new numerical flux identically reproduces the averaged normal component of the DG flux.
(iv) It has the same accuracy and convergence order as the original DG flux. See Theorem 4.

Theorem 4. Assume the exact solution to (1) has regularity p ∈ H1+s(Ω), s > 1
2 . Regarding the elementwise and edgewise

accuracy of the post-processed DG flux obtained from solving (43)–(45), the following hold [3]

∥U∗

h − UDG
h ∥L2(E) = O(hr) ∀E ∈ Eh, (46)

∥U∗

h · n − u · n∥L2(γ ) = O(hr− 1
2 ) ∀γ ⊂ ∂E ∀E ∈ Eh, (47)

where r = min(k, s) and k is the degree of polynomials used for approximating the primal variable.

3.3.3. DG implementation: the primal variable and flux
DG implementation is easy in some aspects but needs careful treatments in some other aspects. Some C-type pseudo-

code is provided in [16]. We have developed Matlab code modules for DGP1, DGP2 for testing the numerical examples in
this paper.

The formulation parameter β allows one to easily switch between SIPG, NIPG, IIPG and compare their performances.
Regarding the penalty factor α, even though it can vary with edges theoretically, the common practice is to choose just
a uniform penalty factor for all edges. For SIPG, the dependency of scheme stability, accuracy, and condition numbers on
penalty factor is obvious. A good penalty factor should ensure the DG schemeworking, but is not too large and hence results
in small condition numbers. This indeed depends on the physical problems being solved.

Well-organized mesh information facilitates DG implementation. Here are some strategies (tips).
(i) Information on edges versus their neighboring elements is needed.
(ii) Set the second element to zero for boundary edges.
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(iii) Let the normal vector on each edge point to the 2nd element from the 1st element. This way, the normal vector on a
boundary edge will automatically agree with the outward normal vector on the domain boundary.

(iv) Treat interior edges separately from the boundary edges. The former involve both neighboring elements, whereas the
latter need only the 1st elements.

For Matlab implementation of DG, adopt the ‘‘vectorization’’ technique, that is, avoid assembly by a loop through
each element, instead try to compute the element stiffness matrices simultaneously for the entire mesh. For C/C++
implementation, element–element adjacency information needs to be generated for memory allocation of the sparse global
coefficient matrix. Actually, one will be dealing with a sparse block matrix. Each block is a small size full matrix. The block
size equals to the degrees of freedom inside each element. For a conforming triangular mesh, there are at most four blocks
in each ‘‘row/column’’, since one triangular element interacts with itself and three neighboring elements.

Implementation of DGP1, DGP2. A delicate piece in DG implementation is the handling of averages and jumps across
interior edges, as reflected in Formula (38) Terms 2, 3 and 4. Actually, Formula (38) Term 2 (ignoring the negative sign in
front of it) and Term 3 could be implemented simultaneously.

Let γ ∈ Γ I
h be an interior edge shared by two elements E1 and E2. By the convention for mesh data structure, the unit

normal vector n points (from E1) to E2, and hence

[q] = q|E1 − q|E2 =: q(1)
− q(2),

[ph] = ph|E1 − ph|E2 =: p(1)
h − p(2)

h ,

whereas

{K∇ph · n} =
1
2
K|E1∇p(1)

h · n +
1
2
K|E2∇p(2)

h · n,

{K∇q · n} =
1
2
K|E1∇q(1)

· n +
1
2
K|E2∇q(2)

· n.

So Terms 2 and 3 each results in four small-size matrices that reflect the interaction of trial and test basis functions on
element E1 and E2 as follows

A11 A12
A21 A22


,


B11 B12
B21 B22


.

For example,

A12 = −
1
2


γ

q(1)KE2∇p(2)
h · nds


, B11 =

1
2


γ

q(1)KE1∇p(1)
h · nds


are m × m matrices (m = 3 for DGP1 and m = 6 for DGP2). Noticing the transpose relationship among these matrices will
ensure code correctness and efficiency:

B11 = A′

11, B12 = A′

21, B21 = A′

12, B22 = A′

22.

DGP1 postprocessing for RT0 flux. Assume discontinuous linear polynomials are used for approximating the primal
variable on a triangular mesh. Here we describe a practical and simple postprocessing procedure for obtaining a flux in RT0,
assuming the permeability K = KE I2 and KE is a constant scalar on each element.

(1) After the numerical approximation ph is obtained, compute its numerical flux uh = −KE∇ph, which is a constant vector
on each triangular element.

(2) On each edge, compute the numerical flux average, which is also a constant vector.
(3) For each of the three edges of a triangular element, compute the normal flux (a constant scalar on each edge). Use these

three normal fluxes to derive a RT0 flux U∗

h on the triangular element.
(4) Note that for an interior edge shared by two triangular elements, the RT0 coefficients (related to this edge) from two

sides have opposite signs.

DGP2 postprocessing for BDM1 flux. Assume discontinuous quadratic polynomials are used for approximating the
primal variable on a triangular mesh. Here we describe a practical and simple postprocessing procedure for obtaining a
flux in BDM1, assuming the permeability K = KE I2 and KE is a constant scalar on each element.

(1) After the numerical approximation ph is obtained, compute its numerical flux uh = −KE∇ph, which is a vector-valued
linear polynomial on each triangular element.

(2) On each edge, compute the numerical flux average, which is also a vector-valued linear polynomial.
(3) For each of the three edges of a triangular element, compute the normal fluxes at the two endpoints. Use these six normal

fluxes to derive a BDM1 flux U∗

h on the triangular element.
(4) Note that for an interior edge shared by two triangular elements, the BDM1 coefficients (related to this edge) from two

sides have opposite signs and reversed positions.
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Table 1
Comparison of degrees of freedom (DOFs) and condition numbers (CondNum) for WGFEMs, MFEMs, and DGFEMs on triangular and rectangular meshes,
assuming a rectangular domain has n partitions in both x- and y-directions.

Method Triangular meshes Rectangular meshes
DOFs CondNum DOFs CondNum

CGP1/CGQ1 n2
+ 2n + 1 O(n2) n2

+ 2n + 1 O(n2)

SIPG(P1/Q1) 6n2 O(n2) 4n2 O(n2)

SIPG(P2/Q2) 12n2 O(n2) 9n2 O(n2)

WOPSIP(P1) 6n2 O(n4) N/A N/A

MFEM RT0 or RT[0] 5n2
+ 2n N/A 3n2

+ 2n N/A

WG(P0, P0, RT0) or WG(Q0, P0, RT[0]) 5n2
+ 2n O(n2) 3n2

+ 2n O(n2)

WG(P1, P1, RT1) or WG(Q1, P1, RT[1]) 12n2
+ 4n O(n2) 8n2

+ 4n O(n2)

4. Comparison of WGFEMs with MFEMs and DGFEMs

This section presents comparison of the newly introduced weak Galerkin finite element methods with the widely ac-
cepted discontinuous Galerkin methods and the classical mixed finite element methods. In particular, we shall make com-
parison on these aspects:

• Scheme formulation;
• Approximating finite element spaces;
• Accuracy and convergence rates;
• Features and solving of the discrete linear systems;
• Computational costs including degrees of freedom;
• Implementation issues.

It should be pointed out that DGFEMs offer complete independence of elementwise shape functions and result in two
sets of values and hence jumps on each inter-element boundary. The discontinuity is controlled through penalty on these
jumps. The MFEMs consider unknowns in both element interiors and on inter-element interfaces. The connection between
these two sets of unknowns is enforced through the inf–sup condition and the first equation in (33). While WGFEMs share
some features of the above methods, the discrete weak gradient operator used in WGFEMs establishes intrinsic connection
of the shape functions in element interiors and those on inter-element boundaries.

4.1. Comparison of WGFEMs with MFEMs

MFEMs rely onmixed formulations, need to satisfy the inf–sup condition, result in indefinite linear systemswhich require
special algorithms but produce numerical fluxes directly alongwith approximation for the primal variable. WGFEMs rely on
usual weak formulations, have plenty of choices for approximating finite element spaces, result in definite linear systems
that are easier to solve. WG numerical fluxes can be obtained via simple calculations or a local projection. (See Table 2.)

There are some interesting connection and differences between MFEM RT0 (respectively MFEM RT[0]) and WG
(P0, P0, RT0) (respectively WG (Q0, P0, RT[0])).

(i) TheMFEM RT0 on a triangularmesh uses RT0 for approximating the flux−K∇p; whereas theweakGalerkin (P0, P0, RT0)
on a triangular mesh uses RT0 for approximating the gradient ∇p.

(ii) For both methods, the flux is locally conservative on elements, the norm flux is continuous across element interfaces.
(iii) Both methods have the same number of unknowns. MFEM RT0 has one pressure unknown on each element and one

normal flux unknown on each edge; whereas WG (P0, P0, RT0) has one pressure unknown on each element and one
pressure unknown on each edge.

(iv) However, the major difference is that MFEMs result in saddle-point problems which are difficult to solve; whereas
WGFEMs result in symmetric definite linear systems that are easier to solve.

4.2. Comparison of WGFEMs with DGFEMs

DGFEMs rely on formulations involving jumps and averages, which need to be carefully dealt in implementation. DGFEMs
have more degrees of freedom and DG flux needs post-processing to be continuous in its normal component. WGFEMs rely
on novel concepts of weak differential operators and have wide choices for approximating finite element spaces.

The ‘‘vectorization’’ technique for Matlab implementation discussed in Section 3.3.3 applies to both DGFEMs and
WGFEMs. However, for WGFEMs, there is no need for handling jumps across element interfaces, the implementation is
easier than that of DGFEMs.
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Table 2
Highlights in comparison of the mixed and weak Galerkin finite element methods.

Mixed methods Weak Galerkin

Formulation Dirichlet BCs natural, Neumann BCs essential Dirichlet BCs essential, Neumann BCs natural

Shape functions On edges for flux, In elements for primal In elements & on edges for primal

Error estimates Optimal order Optimal order

Main features(+) Flux obtained directly SPD discrete linear systems

Main features(−) Saddle-point problems Discrete weak gradients for higher order elements

Two methods produce close results when K is piecewise constant

Table 3
Highlights in comparison of the discontinuous and weak Galerkin finite element methods.

Discontinuous Galerkin Weak Galerkin

Formulation Dirichlet BCs weakly, Neumann BCs natural Dirichlet BCs essential, Neumann BCs natural

Shape functions Inside elements, totally discontinuous, weak continuity by
penalty

Inside elements & on edges

Error estimates Optimal/suboptimal order Optimal order

Main features(+) Flexible in element geometry Locally conservative flux, Continuous normal flux

Main features (−) Penalty factor, Proliferation in unknowns, Flux is not
continuous

Solving small linear systems for discrete weak gradients
of higher order elements

Table 4
Example 1: Convergence rates of the WGFEM with (P0, P0, RT0) elements on uniform triangular meshes.

1/h ∥Q ◦

h p − p◦

h∥L2 Rate ∥p − p◦

h∥L2 Rate ∥u − uh∥L2 Rate

8 2.2312e−3 – 6.5174e−2 – 2.5164e−1 –
16 5.6777e−4 1.97 3.2690e−2 0.99 1.2589e−1 0.99
32 1.4257e−4 1.99 1.6358e−2 0.99 6.2954e−2 0.99
64 3.5682e−5 1.99 8.1807e−3 0.99 3.1478e−2 0.99

128 8.9229e−6 1.99 4.0905e−3 0.99 1.5739e−2 1.00

Table 5
Example 1: Convergence rates of the WGFEM with (P1, P1, RT1) elements on uniform triangular meshes.

n = 1/h ∥Q ◦

h p − p◦

h∥L2 ∥u − uh∥L2

8 7.7758e−05 6.1772e−03
16 9.9421e−06 1.5615e−03
32 1.2572e−06 3.9265e−04
64 1.5804e−07 9.8454e−05

Conv. rate 2.98 1.99

5. Numerical experiments

In this section, we conduct numerical experiments on three benchmark problems and examine the performance of
WGFEMs, MFEMs, and DGFEMs. Some mesh data structures recommended in the iFEM package [18] are used in our testing
code. Some of the techniques discussed in [7] for implementing the lowest order Raviart–Thomas elements in Matlab are
also adopted.

Example 1 (A Very Smooth Solution). Here Ω = (0, 1)2, a known exact solution is specified as p(x, y) = sin(πx) sin(πy),
K = I2 (the order 2 identity matrix). Accordingly, the source term f (x, y) = 2π2 sin(πx) sin(πy). This smooth example has
been tested widely. A similar example was tested in [11].

For Example 1, WGFEMs demonstrate optimal order convergence in the primal variable and its flux, as demonstrated by
the numerical results in Tables 4 and 5. These results agree with the theoretical estimates in Theorem 1.

Table 6 lists the numerical results of WG(P0, P1, BDM1) and MFEM(BDM1, P0). For both methods, piecewise constants
P0 are used to approximate the primal variable (pressure), whereas degree-one vector polynomials BDM1 are used to
approximate the flux (velocity). The two methods have the same degrees of freedom and produce numerical results that
are very close. For both methods, the pressure error L2-norm has 1st-order convergence, and the velocity error L2-norm has
2nd-order convergence, as expected from the theoretical estimates.

However, choosing a good penalty factor is an issue for the DGFEMs, as demonstrated by such a simple problem. Listed
in Table 7 are the results of SIPG P1 with various values of penalty factor α. For α = 1, ∥p − ph∥L2 does not show 2nd-order
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Table 6
Example 1: Numerical results of WG and MFEM in the primal variable (P0) and flux (BDM1).

WG(P0, P1, BDM1) MFEM(BDM1, P0)
1/h ∥p − p◦

h∥L2 ∥u − uh∥L2 ∥p − ph∥L2 ∥u − uh∥L2

23 6.5669e−02 4.7799e−02 6.5687e−02 4.8425e−02
24 3.2755e−02 1.2080e−02 3.2757e−02 1.2228e−02
25 1.6366e−02 3.0292e−03 1.6367e−02 3.0654e−03
26 8.1817e−03 7.5799e−04 8.1817e−03 7.6692e−04

Rate 1.00 1.99 1.00 1.99

Table 7
Example 1: Numerical results of the SIPG scheme with P1 elements on uniform triangular meshes.

1/h α = 1 α = 3 α = 30
Cond# ∥p − ph∥L2 Cond# ∥p − ph∥L2 Cond# ∥p−ph∥L2

8 1.162e+6 3.408e−2 1.374e+5 9.498e−3 3.977e+5 1.836e−2
16 1.571e+7 9.677e−3 6.272e+5 2.504e−3 2.260e+6 4.765e−3
32 1.995e+9 4.183e−3 2.782e+6 6.449e−4 1.137e+7 1.207e−3
64 2.525e+9 1.972e−3 1.197e+7 1.636e−4 4.714e+7 3.036e−4

Table 8
Example 1: Convergence rates of DG P2 solutions in the primal variable and post-processed flux (BDM1).

1/h SIPG (α = 10) NIPG (α = 1)
∥p − ph∥L2 ∥u − U∗

h∥L2 ∥p − ph∥L2 ∥u − U∗

h∥L2

23 2.6171e−04 2.9680e−02 3.4790e−03 2.8047e−02
24 3.2066e−05 7.3149e−03 8.9717e−04 6.9903e−03
25 3.9820e−06 1.8134e−03 2.2712e−04 1.7427e−03
26 4.9672e−07 4.5128e−04 5.7091e−05 4.3492e−04

Rate 3.01 2.01 1.97 2.00

Table 9
Example 2: Numerical results of MFEM RT0 .

1/h ∥u − uh∥L2 Rate ∥p − ph∥L2 Rate

24 7.601703590820497e−02 – 1.669244690634372e−02 –
25 4.840110231960586e−02 0.65 8.307545391465606e−03 1.00
26 3.068878633444810e−02 0.66 4.140421356097081e−03 1.00
27 1.940984536108590e−02 0.66 2.065773522660539e−03 1.00

convergence. For α = 3, ∥p− ph∥L2 does exhibit close to 2nd-order convergence. When the penalty factor increases ten fold
to α = 30, the condition number becomes much larger but the error in the L2-norm becomes worse. It is unclear what the
optimal penalty factor value is.

Shown in Table 8 are the results of DG P2 numerical solutions with symmetric formulation (penalty factor α = 10)
and nonsymmetric formulation (penalty factor α = 1). Post-processing is performed to obtain a numerical flux in BDM1.
These numerical results agree with the DG theory [16]. For DG approximation with even-order polynomials, the L2-norm
of the error in the primal variable has only suboptimal order convergence for the nonsymmetric formulation. However, the
post-processed BDM1 flux for this example has 2nd-order convergence for both SIPG and NIPG.

Example 2 (A Low-Regularity Solution). Now we consider a frequently tested problem on an L-shaped domain Ω =

(−1, 1)2 \ ([0, 1] × [−1, 1]). We have K = I2, p(x, y) = p(r, θ) = r
2
3 sin

 2
3θ


and f (x, y) = 0. A Dirichlet boundary

condition is specified using the value of p(x, y) on ∂Ω . It is known that p ∈ H1+s(Ω)with s =
2
3 − ε for any small positive ε.

Tables 9 and 10 present respectively the numerical results from using MFEM RT0 and WG (P0, P0, RT0). For MFEM RT0,
one can clearly observe 2

3 -order convergence in the flux, which agrees with the theory in [5]. The convergence rate in the
primal variable is actually 1, which is better than the theoretical estimate 2

3 . For WG (P0, P0, RT0), the convergence rates for
the flux and primal variable are the same as those for MFEM RT0. Actually the WG numerical solution is very close to that
of the mixed method and their differences are negligible. Additionally, we observe 4

3 -order convergence in ∥Q ◦

h p− ph∥L2 , as
stated in Theorem 1.

Shown in Table 11 are the results of applyingDGwith P1 polynomials: both the symmetric andnonsymmetric formulation
with a penalty factor α = 4. Even though the approximation to the primal variable exhibits a 1st order convergence
for both SIPG and NIPG, the post-processed RT0 flux shows no convergence. One might try DG P2 approximation and
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Table 10
Example 2: Numerical results of WG (P0, P0, RT0).

1/h ∥u − uh∥L2 Rate ∥p − ph∥L2 Rate ∥Q ◦

h p − ph∥L2 Rate

24 7.6017e−2 – 1.6692e−2 – 2.8622e−3 –
25 4.8401e−2 0.65 8.3075e−3 1.00 1.1486e−3 1.32
26 3.0688e−2 0.66 4.1404e−3 1.00 4.5882e−4 1.32
27 1.9409e−2 0.66 2.0657e−3 1.00 1.8281e−4 1.33

Table 11
Example 2: Convergence rates of DG P1 solutions in the primal variable and post-processed flux (RT0).

1/h SIPG (α = 4) NIPG (α = 4)
∥p − ph∥L2 ∥u − U∗

h∥L2 ∥p − ph∥L2 ∥u − U∗

h∥L2

24 3.0867e−02 5.9658e−01 3.4854e−02 9.5868e−01
25 1.5518e−02 5.9672e−01 1.7525e−02 9.6227e−01
26 7.7797e−03 5.9718e−01 8.7849e−03 9.6427e−01
27 3.8950e−03 5.9755e−01 4.3976e−03 9.6534e−01

Rate 0.99 0 0.99 0

Table 12
Example 3: Comparison of MFEMs and WGFEMs using triangular RT0 elements and
rectangular RT[0] elements.

1/h Triangular meshes Rectangular meshes
maxEh

pMFEM
h − pWG

h

 maxEh

pMFEM
h − pWG

h


20 2.252642516964443e−13 1.609823385706477e−14
40 7.779332733548472e−13 2.565725409908737e−13
60 9.641176745844859e−13 5.186961971048731e−13
80 2.427724687947830e−12 1.314948150366035e−12
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Fig. 4. Example 3: A heterogeneous permeability field on 20×20 gridblocks: permeability is 1 on red locks but only 10−6 on blue blocks. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

postprocessing for BDM1 flux, but that results in significantly more unknowns. There will not be much gain in convergence
in the approximations of the primal variable and flux, since the problem possesses low regularity.

Example 3 (A Heterogeneous Permeability Field).We solve the boundary value problem (1) with a heterogeneous permeabil-
ity field given in [19] (see Fig. 4). Dirichlet and Neumann boundary conditions are specified as follows

p = 1, left; p = 0, right; −(K∇p) · n = 0, top or bottom.

No analytical pressure solution is known for this example. We run MFEM RT0 andWG (P0, P0, RT0) on triangular meshes
and MFEM RT[0] and WG (Q0, P0, RT[0]) on rectangular meshes. The mesh size varies from h = 1/20 to h = 1/80. Shown in
Fig. 5 are the profiles of the numerical pressure (in color) and velocity vector (in black arrow vectors) obtained from using
MFEM RT0 on a triangular mesh and WGFEM (Q0, P0, RT[0]) on a rectangular mesh. Note that both the mixed method and
weak Galerkin method use piecewise constants to approximate the primal variable pressure. The results listed in Table 12
show thatMFEMs and WGFEMs produce very close results when the permeability is a piecewise constant, see [9].
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Fig. 5. Example 3: Profiles of numerical pressure (in color) and velocity vector (in black arrow vectors): (a)MFEM RT0 with h = 1/40, (b)WG (Q0, P0, RT[0])

with h = 1/40. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Example 3: Profiles of numerical pressure (in color) and velocity vector (in black arrow vectors): (a) SIPG P1, α = 1 with h = 1/40, (b) SIPG
P1, α = 3 with h = 1/40. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Example 3: The total fluxes of WG (P0, P0, RT0) and DG (SIPG,NIPG) with penalty factor α = 3.

This example was also studied in [3]. Quadratic and cubic polynomials were used in the DG framework to obtain numer-
ical pressures. The polynomials ought to have degree at least 2 in order to project the DG flux into a BDM finite element
space. Such a DG scheme results in a significant number of unknowns, see Table 1.

Here we test DG with P1 polynomials and the post-processing procedure for projection into RT0, as discussed in Sec-
tion 3.3.3. As shown in Fig. 6, for the SIPG with penalty factor α = 1 on a triangular mesh with mesh size h = 1/40, the
numerical pressure and post-processed velocity are not useful. However, the results for α = 3 are good.

To further examine the performance of these numerical methods, we calculate the total flux as suggested in [19]. As
shown in Fig. 7, the total flux obtained from using the cell-centered finite difference method [20,9] on a rectangular mesh
with h = 1/400 is used as a reference. The results from MFEM RT0 are not shown in the figure, since they are basically
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equivalent to those of WG (P0, P0, RT0). The results of WG (P0, P0, RT0) show good approximation. They exhibit the feature
‘‘approximating from below’’, which is typical for the K−1-methods [21]. The results of NIPG and SIPG with P1 polynomials
and penalty factor α = 3 are also shown in Fig. 7. They exhibit the feature ‘‘approximating from above’’, which is typical for
the K-methods [21].

6. Concluding remarks

In this paper, we have conducted a comparative study on the newly introduced WGFEMs, the widely accepted DGFEMs,
and the classical MFEMs. Here is a summary:

(i) WGFEMs are viable alternatives of MFEMs;
(ii) Compared to DGFEMs, WGFEMs are easier to use and performs better with respect to continuous normal flux across

element interfaces, less unknowns, and no need for choosing penalty factors.

The following main features of the WGFEMs have been clearly observed:

• Locally conservative by design;
• Normal flux is continuous across element interfaces;
• Less unknowns (compared to DGFEMs);
• Definite discrete linear systems (compared to MFEMs);
• No need for choosing penalty factors (compared to DGFEMs).

It is accepted that CGFEMs are not locally conservative, although there are different opinions and debates on this state-
ment. There are at least two remedies for rendering CG locally conservative:

(i) Postprocessing as presented in [8];
(ii) Enhancement by the piecewise constant space as investigated in [2]. This is known as the enhanced Galerkin (EG).

It should be interesting to compare WG with CG postprocessing and EG, examining the connection and differences among
these methods.

This paper focuses on the comparison of WG with DG and MFEM in 2-dim. But conclusions presented in Tables 2 and 3
still hold for the 3-dimensional versions of these methods.

There are already a variety of numerical methods for the prototype problem (1), including the recently developed weak
Galerkinmethods. Differentmethods have different features. This paper intends to offer some guidelines formaking choices.
Wehave developed aMatlab code package that includesWGFEMs, DGFEMswith post-processing, andMFEMs. This package
will be further expanded to include CGFEMs with post-processing and EG.
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