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Abstract: It is known that the retrovirus capsids possess a fullerene-like structure. These caged polyhedral
arrangements are built entirely from hexagons and exactly 12 pentagons according to the Euler theorem. Viral
capsids are composed of capsid proteins, which create the hexagon and pentagon shapes by groups of six
(hexamer) and five (pentamer) proteins. Different distributions of these 12 pentamers result in icosahedral,
tubular, or conical shaped capsids. These pentamer clusters introduce declination and hence curvature on
the capsids. This paper provides explicit and quantitative characterization of curvature on virus capsids. The
concept of curvature concentration is also introduced. For the HIV (5,7)-cone, it is shown that the curvature
concentration at the narrow end is about at least four times higher than that at the broad end. Our modeling
results about curvature concentrations on HIV-1 capsids echo the results in the literature that the pentamers
are in the regions with the highest stress, although the connection between the two approaches (curvature
concentration and stress) is to be explored. This also leads to a conjecture that “HIV-I capsid narrow end may
close last during maturation but open first during entry into a host cell".
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1 Introduction

The human immunodeficiency virus type 1 (HIV-1) is a retrovirus that causes the acquired immunodeficiency
syndrome (AIDS). Because of the exceptionally high mortality rates due to AIDS and the peculiar structure of
HIV-1 virions, HIV-1 virus is an active research area, see, e.g., [5, 14, 28, 41] and references therein.

Immature HIV-1 virions bud on the plasma membrane of an infected host cell and then undergo the mat-
uration process [14, 21], during which capsid proteins form a conical shell that protects the viral RNA genome
and performs essential functions in the virus life cycle. While significant progresses have been made with
regards to understanding the assembly mechanism and structure of the HIV-1 and more general viral capsids
[1, 8-11, 16, 17, 29-31, 35, 36, 41], there are yet many questions to be answered.

HIV-1 conical cores along with other virus capsids are best described by a fullerene-like structure. Gen-
erally speaking, this structure is a cage-like macromolecule that has a simple 3-valent, n-vertex polyhedral
surface. Geometrically, such a capsid forms a closed surface, consisting of hexagons and exactly 12 pentagons,
according to the Euler theorem. The capsid proteins (CA) join together to create the hexagon and pentagon
shapes by grouping six (hexamer) and five (pentamer) proteins. The capsid encloses the viral RNA or DNA,
providing a protective barrier.

*Corresponding Author: Jiangguo Liu: Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874,
USA, E-mail: liu@math.colostate.edu

Farrah Sadre-Marandi: Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, USA, E-mail:
sadre@math.colostate.edu

Simon Tavener: Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, USA, E-mail:
tavener@math.colostate.edu

Chaoping Chen: Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870,
USA, E-mail: Chaoping.Chen@ColoState.edu

© 2015 Jiangguo Liu et al., licensee De Gruyter Open.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.



44 = Jiangguo Liu, Farrah Sadre-Marandi, Simon Tavener, and Chaoping Chen DE GRUYTER OPEN

Small-size viral capsids tend to conform to the preferred icosahedral symmetry [7, 20]. This symmetry
allows the 12 pentamer groups to be evenly placed on the surface of a sphere. Although most viral capsids
follow the fullerene-like structure, not all virus capsids follow the icosahedral symmetry. Tubular (sphero-
cylinder) viral capsids have been observed for Cowpea Chlorotic Mottle Virus and Alfalfa Mosaic Virus, among
others. The HIV-1 capsid is cone-shaped and composed of exactly 12 pentamers and approximately 218 hex-
amers [5, 31, 37]. The murine leukemia virus (MuLV) and Rous sarcoma virus (RSV) also exhibit asymmetry
or irregularity in their capsid structures [18].

The cone angle of the HIV-1 capsid has been measured in experiments by dehydrating the core of a virus-
like particle (VLP) onto a carbon grid [11]. It is found that the angle was quantified into the five allowed values
prescribed by the Euler formula

sin(6/2) =1 - P/6, (1

where 0is the cone angle and P is the number of pentamers at the narrow end of the cone. The five angle values
(and the corresponding P values) are 6 = 112.9°(P = 1), 8 = 83.6°(P = 2), 0 = 60°(P = 3), 0 = 38.9°(P = 4),
0 = 19.2°(P = 5). For convenience, we name these cones as (1,11)-, (2,10)-, (3,9)-, (4,8)-, (5,7)-patterns. It is
also found that the viral core and most synthetic cones exhibited cone angles of approximately 19 degrees
[11], in other words, most HIV-1 cones are in the (5,7)-pattern, but (4,8)-cones and other unusual types of VLPs
have also been observed in experiments [2-4].

Recently, the cone structure of the HIV-1 capsid has been intensively investigated. It is suggested in [6]
that the asymmetry and quasi-equivalence exhibiting in conic and tubular capsids are related to the hinge
between the C-terminal domain (CTD) and N-terminal domain (NTD) of the capsid protein. In [37], it is pre-
sented that the 12 pentamers introduce sharp declinations on the HIV-1 capsid. A line of hexamers connecting
two declinations is presented to illustrate the continuously varying curvature, as shown Figure 4. Dihedral
angles along this line are also calculated. These dihedral angles between two subunits (hexamer/hexamer
or hexamer/pentamer) are defined as bite angles. It is discussed in [14] that the bite angle between adjacent
hexamers vary from around 135° between two hexamers connected to the same pentamers at either end of
the HIV-1 cone to around 180° in the more flat region in the middle of the cone. In [14], there is also exami-
nation on the different angles between the subunits in CA pentamers or hexamers and the approximate pivot
point for rotations. It is concluded in [31] that the rigid-body rotations around these assembly interfaces seem
to be sufficient for explaining the curvature variation on the HIV-1 cone. It is also concluded in [41] that incor-
poration of CA pentamers into the surface hexameral lattice induces acute surface curvature. These studies
deepen our understanding of viral capsid structure and viral assembly mechanism and motivate inhibitor for
the formation of critical CA-CA interfaces in the capsid assembly [13].

This paper presents an explicit and ease-to-use approach for quantitative characterization of curvatures
on virus capsids. Furthermore, the concept of curvature concentration is introduced and this quantity is cal-
culated for the narrow and broad ends of HIV-1 conical capsids. For HIV (5,7)-, (4,8)- conical capsids, the
results in this paper show that the narrow end always has the highest curvature concentration, which is an
indication that the narrow end on the HIV-1 capsid is a region with the largest stress.

2 Mathematical Background: Curvature and Discrete Curvature

To understand curvatures on a surface, we need the concept of curvatures on a curve. In three-dimensional
space, the curvature of a curve at a given point is a measure of how fast the curve changes its direction at that
point. A formal mathematical definition for curvature is given by

dT

= lds

>

where T is the unit tangent vector and s is the arc length [32].
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Figure 1: Left: There are two principal curvatures k1 and k, at a point p on a smooth surface. Right: For a point on a conic sur-
face, the minimum principal curvature is x; = O whereas the maximum principal curvature is x; = 1/r with r being the radius of
the circular section on which the point is located.

2.1 Continuous Curvatures on a Smooth Surface

Let M be a smooth surface and p be a point on M. The curvatures are characterized and quantified by the
shape operator S, defined as

S=U{tSy:p e M}, Sp(d) = -DzN(p),

where N is the unit normal vector field defined in an open neighborhood of the point p on the given surface
M, ti is any tangent vector to M at p, namely, a tangent vector to a curve that passes through the point p and
is entirely on the surface M. Note that Sp (i) defines the negative directional derivative of M at p along the
vector u. Intuitively, S, (ui) explains how the surface M “curves" around the point p. The shape operator of M
at p derived from - is —Sp, since it essentially reverses only the direction. Therefore, the shape operator of
M is the union of all Sy, at the given point p on M [32]. For a non-planar surface, the Gaussian curvature is
given by the determinant of the operator S.

The principal curvatures of a surface at a given point are the two eigenvalues of the shape operator S dis-
cussed above. Denoted as k; and k>, the principal curvatures measure the maximum and minimum bending
of the surface at a given point, as shown in Figure 1. Mathematically, the Gaussian curvature is K = k1 k>, the
product of the two principal curvatures. These principal curvatures can also be used to define other terms,
e.g., the mean curvature 3 (k1 + x2).

For example, the Gaussian curvature of a plane at any point is zero as the plane will not bend in any
direction, thatis, x; = x; = Oand hence K = k1x; = 0. Cylinders and cones also have zero Gaussian curvature,
since the minimum principal curvature k; = 0 in each shape. The case for a cone is illustrated in the right
panel of Figure 1.

For a smooth surface M, the Gauss-Bonnet Theorem (see [32]) asserts that the integral of the Gaussian
curvature on the surface is equal to 277 times the Euler characteristic:

4 / K(p)dp = 27y %)

2.2 Triangulation and the Euler Characteristic of a Polyhedral Surface

In the discrete setting, a smooth surface is replaced by a polyhedral surface. The concept of the discrete Gaus-
sian curvature on a polyhedral surface is based on the triangulation of such a surface. Triangulation, in this
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case, is equivalent to the idea of tiling, see [23, 24], in which the tiles or subsections within one polygon are
related by the theory of quasi-equivalence. For convenience, we assume each tile is equivalent, resulting in
similar triangles within each hexagon or pentagon along the polyhedral surface. Since each polygon is cut
into similar triangles, we call this process triangulation.

Figure 2: Left: A hexagon (in color yellow) and a pentagon (in color red) are each cut by similar triangles. Right: A hexagonal
lattice is triangulated by cutting each hexagon into six equilateral triangles, all sharing the vertex in the center.

Consider a polyhedral surface as a set of polygons (in the space) joined together at their edges with varying
dihedral angles. The most natural way for cutting a polyhedral surface into subsections is to divide the non-
triangular shape into the smallest amount of similar triangles. For example, to triangulate a hexagon, one
would cut it into six equal pieces, with a common vertex at the center of the hexagon, as shown in Figure 2
(left panel). Pentagons can be cut in a similar fashion, with five similar triangles having a common vertex at
the center of each pentagon, see also the left panel of Figure 2.

Let M be a polyhedral surface. Denote by V the number of vertices, E the number of edges, and F the
number of faces. The Euler characteristic of a closed polyhedral surface is given as y,; = V — E + F, regardless
of how the surface is bent. Any closed convex polyhedral surface has an Euler characteristic y,; = 2, see
[23, 32]. This characteristic is independent of the choice of subsections, triangles, or tiles, since it is assumed
each polygon is a planar object.

2.3 Discrete Gaussian Curvature on a Polyhedral Surface

In the discrete setting, the Gauss-Bonnet Theorem (see [32]) holds analogously

> Ky=2mpy;  Kv=2m-) 6, 3
i

veD

where D is a triangulated region on a given polyhedral surface M, v is a vertex in D, and 8; are the interior
angles at v. Each 0; is an angle of a triangle adjoined at v. Ky is called the angle defect at v, which describes
the discrete Gaussian curvature at the point.

Viral capsids are examples of closed convex polyhedral surfaces. Their Euler characteristic is y = 2, and
so the sum of the discrete Gaussian curvatures is 4. For icosahedral capsids, the curvature is distributed
uniformly over the capsid due to its spherical-like shape. Non-icosahedral capsids do not share this property.
A question then arises: how is the total curvature of 4 distributed throughout the capsid?
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3 Curvature Concentrations on the HIV-1 Conical Capsid

Many known viral capsids have a fullerene-like structure, which is a caged polyhedral surface composed of
coating proteins or subunits grouped as hexamers and pentamers (6 and 5 proteins respectively). The number
of hexamers varies for each capsid, depending on the size of the capsid. However, the number of pentamers
always equals 12. This specific number of pentamer groups is required by the Euler Theorem to guarantee
closure with no holes.

Some viral capsids have icosahedral or cylindrical symmetry. For the former, the pentamers are evenly
spaced. For the latter, the pentamers are split into a (6,6)-pattern: 6 pentamers in the bottom, 6 pentamers in
the top, and a large number of hexamers between the two ends.

HIV-1is a virus that has a cone shape, mostly in the (5,7) pattern, that is, 5 pentamers at the narrow end
and 7 pentamers at the broad end. In [3], it is demonstrated that HIV-1 VLPs could have a larger cone angle
resulting in a (4,8)-cone shape. Mathematically, there are five possible cones: (5,7), (4,8), (3,9), (2,10), (1,11).
However, extreme distributions such as the (2,10)- and (1,11)-cones are rarely seen in the nature [15].

For icosahedral viral capsids with triangulation number T > 1, pentamers are isolated, each surrounded
by a ring of hexamers. Isolation of pentamers is also suggested for non-icosahedral viral capsids by the end-
diameter measurements in [2-5, 11, 31] and the HIV-1 capsid modeling efforts in [26, 33] as well. Carbon
fullerene structures also exhibit pentagons surrounded by a ring of hexagons, since this is a more stable
configuration [15]. Assuming pentamers are isolated and considering triangulation of the hexamers and pen-
tamers in the most natural way lead to only two possible cases for curvature calculations, due to the consistent
interior angles in each polygon.

Figure 3: Case 1: A pentamer is surrounded by hexamers. Around a pentamer vertex, each triangle inside the pentamer has an
interior angle 6 = 371/10 whereas each triangle inside the hexamers has an interior angle 6 = 77/3.

Case 1. The first case occurs when a vertex v of a pentamer P is surrounded by two hexamers H, as shown
in Figure 3. The triangulation produces six equilaterial triangles for each hexamer and five similar triangles
for the pentamer. At the very vertex, there are a total of six interior angles, four from the hexamers and two
from the pentamer triangulation. The interior angles of the triangles in the hexamers have values 6; = 71/3
fori =1, 2, 3, 4. The interior angles in the pentamers have values 0; = 371/10 fori = 5, 6.

Then the angle defect or the discrete Gaussian curvature at v is given by

6
KV(P)=2n—Ze,~=2n—4(g)—2(%)=%. )
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Notice that the curvature calculation will be the same for each vertex of the pentamers P, since each vertex
of Pis also connected to 2H with the same triangulation. Each of the five vertices of P contributes a curvature
of 1/15, so the total discrete Gaussian curvature for the entire pentamer P is 71/3.

Case 2. The second case occurs when a hexamer is surrounded by six other hexamers. Connecting the
hexamers creates a flat surface (plane), as shown in Figure 2. Considering the same triangulation used in
case one, the interior angles at each vertex v are given by 8; = 60° = /3 fori = 1, 2, 3, 4, 5, 6. The discrete
Gaussian curvature at v is then

6
KV(H)=2n-Ze,~=2n—6g=0. (5)
i

Given exactly 12 pentamers and Ny hexamers, the total discrete Gaussian curvature of the caged cone is
12*5* Ky(P) + Ng * 6 * Ky(H) = 47,

which agrees with the discrete version of the Gauss-Bonnet Theorem (3).

For a cone-shaped capsid, the total curvature is independent of the number of hexamers in the cone and
the curvature is nonzero only at pentamer positions. This implies the position of each pentamer is related to a
location of high curvature on the capsid, introducing sharp declinations on the capsid as observed in [31, 37].

3.1 Curvature Concentrations on the (5,7)-Cone

Consider the HIV-1 conical capsid as a polyhedral surface M, consisting of hexamers H and pentamers P. We
assume that each vertex of P is surrounded by a pentamer and two hexamers.

The (5,7)-pattern has been widely reported in experimental observations. This means 5 pentamers at the
narrow end of an HIV-1 cpasid and 7 pentamers at the broad end of the capsid. This is the case when the
capsid has a cone angle 19.2° [2-4, 11].

The total discrete curvature of the broad end (or the top) is K;p = 77/3, whereas the total discrete curva-
ture of the narrow end (or the bottom) is Ksp = 571/3. The middle region of the cone is assumed to have only
hexamers, so the total discrete curvature of this part is zero. This could be better understood when consider-
ing the middle region of the HIV-1 capsid as a right cone. The principal curvatures at any point on the right
cone are given by k; = 0 and x, = 1/r (r is the radius of the circular section on which the point is located), as
shown in Figure 1. The Gaussian curvature at any point on a right cone is zero.

Another useful metric is the curvature concentration, i.e., curvature per area on a given surface.

General Formulas. To calculate the curvature concentration, the sum of the areas of the hexamers and
pentamers in each region (the narrow end or the broad end) is considered. For the (5,7)-cone, there are 5
pentamers in the narrow end and 7 pentamers in the broad end. Assume

(A1). These pentamers are isolated;

(A2). For each end, each vertex of a pentamer is surrounded by the pentamer and two hexamers;
(A3). There are H, hexamers in one particular end (narrow end or broad end);

(A4). ais the side length of pentamers or hexamers.

Then direct mathematical calculations yield the formulas for surface area (SA) as follows

SAsp(a, Hy) = a <Hn3f . % 55 + zﬁ)) , ©)
SA;p(a,Hn) = a* <Hn3\2/§ + %\/ 5(5 + 2\/§)) . @

Parameter Estimates. The overall height of an HIV-1 capsid was found to be 119 + 11nm [3], and the
mean diameters of the broad and narrow ends are 56nm and 2 7nm, respectively [4]. Using the measurements
reported in [3, 5, 31, 37], it is estimated that
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— 4% of the hexamers lay at the narrow end;
— 36% of the hexamers are at the broad end;
— the remaining 60% are in the middle region;

with an average of 218 hexamers in each capsid.

Recent cryo-EM results [41] indicate a larger diameter at the narrow end, with an estimate of 6% of the
hexamers at the narrow end, 33% at the broad end, and 61% in the middle region, with an average of 216
hexamers.

The diameter of a hexameric unit was found to be approximately 9.8nm with a 3.2nm spacing between
units in VLPs [3]. Therefore, for the fullerene-like structure model, it is assumed each subunit (pentamer or
hexamer) has a side length 6.5nm.

Calculations. For the narrow end of an HIV-1 capsid, the surface area is calculated using formula (7),
with a range
SAsp(6.5, Hy) ~ 1, 460 + 219nm?.

Similarly, the surface area of the broad end is estimated as
SA7p(6.5, Hy) ~ 8, 796 + 384nm?.

The curvature concentration is defined as the ratio of the discrete Gaussian curvature per surface area in each
region. For the broad and narrow ends, we have respectively curvature concentrations

Ck,, ~8.34x107",  Cg,, ~3.59x107°.

These results show that Ck,, is at least four times higher than Cy,,, that is, the curvature concentration at
the narrow end is at least four times higher than that at the broad end.

3.2 Curvatures on (4,8)- and Other Type Cones

As discussed in the previous sections, there are five possible cone angles for a cone composed of only hexam-
ers and pentamers, according to the Euler formula. Although 19.2° is the most common cone angle for HIV-1
cores, larger cone angles between 30° and 40° have also been reported in experimental data [2, 3, 11]. This
implies that HIV-1 cores could form into a cone with 4P at the narrow end and 8P at the broad end. Both (4,8)-
and (3,9)-cones have been seen in graphite nanocones, although it is thought (2,10)- and (1,11)-cones will not
form, due to the high strain at the narrow end [15].

Based on the same assumptions (A1)-(A4) listed in the previous subsection, the surface areas of the nar-
row (4P) and broad (8P) ends of a conic capsid are estimated by adding the surface areas of hexamers and
pentamers in each region as follows,

SAup(a,Hy) = a° (Hn3\2/§ +1/5(65 + 2\@)> , (8)
e (Hn3\2/§+2\/5(5+2\@)), ©)

where again Hy, is the number of hexamers in that region and a is the side length of the pentamers or hexam-
ers.
For the (4,8)-cone, based on the above formulas, one has approximations for the surface areas as follows

SAgp(a, Hn)

SAgp ~ 8, 485nm’, SA,p ~ 1,059nm?.
Then the curvature concentrations of the broad and narrow ends are respectively

Ciyp = 9.87 x 1074, Ci,, = 4x 107,
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Therefore, Cg,, is at least four times higher than Cy,,.

Similar calculations can be performed for curvature concentrations of other cone types. As the number
of P (pentamers) in the narrow end decreases, the surface area and total curvature for that region will also
decrease. As the number of P in the broad end increases, the surface area and total curvature of that region
will increase. This shows that the narrow end always has the highest curvature concentration on the HIV-1
capsid and hence may be the “weakest" region in some sense, regardless of the cone angle.

4 Discussion

Relation to Declination. Existing work [12, 25, 31, 37, 39, 40] suggest that the pentamers introduce sharp
declinations in the HIV-1 capsid. This agrees with our curvature calculations. These sharp declinations occur
because the pentamers are the sources of curvature on the closed capsid. In the middle region of the HIV-1
capsid, the dihedral angles (angles between the hexamer-hexamer planes) vary but are close to 180°.

Pentamers introduce
sharp declinations

Continuously changing
curvature in the
hexagonal latlice

120 140 160 180
Dinedral angle (deg)

Figure 4: On a caged (5,7)-cone, the 12 pentamers (red) introduce sharp declinations to close the capsid. The graph of the di-
hedral angles between the hexamers shows measurements close to 180°, implying similarity between the middle region and a
rolled plane. Source: [37] (with permission from Elsevier for reuse of the figure).

Note that the curvature at a point depends on the interior angles of the triangles meeting there. A dihedral
angle in this case is the angle between two triangles in the triangulation of pentamers or hexamers. By the
definition of the discrete Gaussian curvature, for the curvature to be O at one point, the dihedral angle should
be 180° (equivalent to k; = 0) along one principal direction. For a cone, this direction usually occurs along
the edge straight up to the broad end, as shown by the x; dotted line in the right panel of Figure 1.

Conjecture: HIV-1 Narrow End Closed Last But Opened First. The above curvature calculations
demonstrate that HIV-1 capsid has positive curvature in the narrow and broad ends but zero curvature in
the middle of the cone. No curvature in the middle region might mean no stress, and hence the middle region
may be the first to be formed. This is consistent with the curled sheet model [38] and the assembly mech-
anisms investigated in [22, 40], which conclude that pentamers are formed later in assembly, due to high
stress.

There should be connection between the high curvature concentration in the narrow end and the high
stress around pentamers. It has been reported experimentally for P22 and TYMO (turnip yellow mosaic) virus
[40] that disassembly is initiated by pentamer release. This is echoed by our curvature results. When capsid
becomes thermodynamically unfavorable, regions with high stress or high curvature would be the first to
break apart. Recent experimental and modeling studies also show that HIV-1 narrow end might not close,
if conditions are unfavorable [38], as shown in Figure 5. This discusion leads to our conjecture: the narrow
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Figure 5: Modeling and experimental results in [38] show that the HIV-1 capsid narrow end might not close, if conditions are
unfavorable. Source: [38] (with permission from Elsevier for reuse of the figure).

end of the HIV-1 capsid might be closed last during viral maturation but opened first during entry into a host
cell. Our future work will explore this conjecture further and the connection between stress and curvature
concentration.

More Experimental Data Desired for Other Types of HIV-1 Conical Cores. The majority of the existing
work on the HIV-1 cone model focuses on the (5,7)-pattern, even though (4,8)-cones have been observed in
experiments [3]. The results in this paper show that the (4,8)-cone has also high contrast of curvature con-
centrations for the narrow and broad ends. It should be interesting to examine possibility and stability (or
instability) of formations for different types of cones. It will be helpful for modeling research on HIV-1 cone
structure if more detailed and specific experimental data on different types of cones are available. Typically,
both the (5,7)- and the (4,8)-cone statistics get grouped together during averaging. Yet having independent
information on the (4,8)- and other types of cones will help identify favorable or unfavorable conditions for
formation of HIV-1 cone structure.

Relation of Curvature to Elastic Energy. The modeling research presented in this paper shows that
the narrow end of the HIV-1 conical core has the highest curvature concentration for the (5,7)- and (4,8)-
patterns. This high curvature concentration is tightly related to the stress and elastic (bending) energy at the
narrow/broad ends. Similar conjectures have been analyzed to find out

— To which extent localization of Gaussian curvature depends on elastic stiffness [19];
— The connection among the nonzero spontaneous curvature, the energy of the 12 pentameric declina-
tions, and formation of particular capsid shape [26, 27].

It is important to note that even though the HIV-1 conical capsids may have high stress regions, the coni-
cal capsids do not constitute energy minimum structures unless their volume and height are fixed [26]. The
bending might be related to the hinge between the CTD and NTD of the CA protein. Studying the excess energy
could shed light on HIV-1 conical structure [34]. These are under our investigation and shall be reported in
our future work.

Capsids of Other Types of Retroviruses. The concepts and methodology presented in this paper could
be applied to other types of viral capsids, e.g., murine leukemia virus (MuLV) and Rous sarcoma virus (RSV)
[18]. This is also under our investigation.

Conflict of interest. Author state no conflict of interest.
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