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Abstract
DarcyLite is a Matlab toolbox for numerical simulations of flow and transport in 2-dim porous
media. This paper focuses on the finite element (FE) methods and the corresponding code
modules in DarcyLite for solving the Darcy equation. Specifically, four major types of finite
element solvers, the continuous Galerkin (CG), the discontinuous Galerkin (DG), the weak
Galerkin (WG), and the mixed finite element methods (MFEM), are examined. Furthermore,
overall design and implementation strategies in DarcyLite are discussed. Numerical results are
included to demonstrate the usage and performance of this toolbox.
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1 Introduction

The Darcy’s law is a fundamental equation for modeling flow in porous media. It is usually
further coupled with transport equations. Two examples amongst the vast applications in this
regard are oil recovery in petroleum reservoirs [4, 10, 13] and drug delivery to tumors. Efficient
and robust Darcy solvers are needed for transport simulators [6]. There exist many finite
element solvers for the Darcy equation, or more generally second order elliptic boundary value
problems, e.g., the continuous Galerkin finite element methods [5], the discontinuous Galerkin
finite element methods [2], the enhanced Galerkin (EG) finite element methods [13], the mixed
finite element methods [7], and the newly developed weak Galerkin finite element methods
[10, 16]. These types of finite element methods have distinctive features in addition to certain
common features. Different finite element solvers might be favored by different users and/or
applications. Their implementations share some common strategies but also need different
treatments [11]. Based on these considerations, we have developed DarcyLite, a Matlab toolbox
that contains solvers for the Darcy equation and concentration transport equations. Matlab is
chosen as the programming language, due to its popularity, easiness for coding, and integrated
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graphics functionalities. This toolbox is easy to use and efficiently solves medium-size 2-dim
flow and transport problems. It is expandable. This allows incorporation of other (new) types
of solvers for flow and transport problems. But this paper focuses on the Darcy solvers.

In this paper, we discuss mainly four finite element solvers (CG, DG, WG, MFEM) and their
Matlab implementations in DarcyLite. This includes details on mesh data structure, quadra-
tures, finite element mass and stiffness matrices, handling of boundary conditions, assembly of
global discrete linear systems, computation of numerical velocity and normal fluxes on edges,
examination of local mass conservation, and presentation of numerical pressure and velocity. A
numerical example is included to demonstrate the use and efficiency of this toolbox.

We consider 2-dim elliptic boundary value problems (Darcy problems) formulated as{
∇ · (−K∇p) ≡ ∇ · u = f, x ∈ Ω,

p = pD, x ∈ ΓD, u · n = uN , x ∈ ΓN ,
(1)

where Ω ⊂ R
2 is a bounded polygonal domain, p is the primal unknown (pressure), K is a

hydraulic conductivity (permeability) tensor that is uniformly symmetric positive-definite, f
is a source term, pD, uN are respectively Dirichlet and Neumann boundary data, n the unit
outward normal vector on ∂Ω, which has a nonoverlapping decomposition ΓD ∪ ΓN .

We define a subspace and a manifold respectively for scalar-valued functions as follows

HD,0(Ω) = {p ∈ H1(Ω) : p|ΓD = 0}, HD,pD
(Ω) = {p ∈ H1(Ω) : p|ΓD = pD}.

The variational form for the primal variable pressure reads as: Seek p ∈ H1
D,pD

(Ω) such that∫
Ω

K∇p · ∇q =

∫
Ω

fq −
∫
ΓN

uNq, ∀q ∈ H1
D,0(Ω). (2)

The Darcy equation can also be rewritten as a system of two first-order equations by con-
sidering the primal variable (pressure) and flux (velocity u = −K∇p) as follows

K−1u+∇p = 0, ∇ · u = f. (3)

We define a subspace and a manifold respectively for vector-valued functions as follows

HN,0(div,Ω) = {v ∈ L2(Ω)2 : divv ∈ L2(Ω),v|ΓN = 0},
HN,uN

(div,Ω) = {v ∈ L2(Ω)2 : divv ∈ L2(Ω),v|ΓN · n = uN}.

The mixed variational formulation reads as: Seek u ∈ HN,uN
(div,Ω) and p ∈ L2(Ω) such that

⎧⎪⎨
⎪⎩

∫
Ω

(K−1u) · v −
∫
Ω

p(∇ · v) = −
∫
ΓD

pDv · n, ∀v ∈ HN,0(div,Ω),

−
∫
Ω

(∇ · u)q = −
∫
Ω

fq, ∀q ∈ L2(Ω).
(4)

For Darcy FE solvers, two desired properties are (assuming uh is the numerical velocity):

• Local mass conservation: For any element E with n being the outward unit normal
vector on its boundary ∂E, there holds∫

∂E

uh · n =

∫
E

f. (5)
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• Normal flux continuity (in the integral form): For an interior edge γ shared by two
elements Ei that have respectively outward unit normal vectors ni(i = 1, 2), there holds∫

γ

uh|E1
· n1 +

∫
γ

uh|E2
· n2 = 0. (6)

These important quantities are set as standard outputs of the FE solvers in this toolbox:

(1) Numerical pressure average over each element;

(2) Numerical velocity at each element center (and if needed, coefficients in the basis of the
elementwise approximation subspace, e.g., RT0 or RT[0]);

(3) Outward normal fluxes on all edges of each element;

(4) Local-mass-conservation residual on each element if a FE solver is not locally conservative;

(5) Normal flux discrepancy across each interior edge if the normal fluxes are not continuous.

2 FE Solvers for Darcy Equation: CG, DG, WG, MFEM

2.1 Continuous Galerkin (CG)

The CG solvers for the Darcy equation are based on discretizations of the primal variational
formulation (2). CG P1 on triangular meshes and CG Q1 on rectangular meshes are most
frequently used. For a triangular mesh Th with no hanging nodes, let Vh be the space of all
continuous piecewise linear polynomials on Th. Let V h

0 = Vh∩HD,0(Ω) and V h
D = Vh∩HD,pD

(Ω)
(after Lagrangian interpolation of Dirichlet boundary data being performed). A finite element
scheme using CG P1 for the pressure is established as: Seek ph ∈ V h

D such that∑
T∈Th

∫
E

K∇ph · ∇q =
∑
T∈Th

∫
T

fq −
∑
γ∈ΓN

h

∫
γ

uNq, ∀q ∈ V h
0 . (7)

After the numerical pressure ph is obtained, the numerical velocity is calculated ad hoc [4].
The CG P1 basis functions are actually barycentric coordinates. Computation and assembly

of element stiffness matrices are relatively easy. CG P1 or Q1 schemes have the least numbers
of unknowns. But CG schemes are not locally mass-conservative and do not have continuous
normal fluxes across edges [8]. Post-processing is needed [5] to render a numerical velocity the
above two properties.

2.2 Discontinuous Galerkin (DG)

Let Eh be a rectangular or triangular mesh, define V k
h as the space of (discontinuous) piecewise

polynomials with a total degree ≤ k on Eh. A DG scheme seeks ph ∈ V k
h such that [13]

Ah(ph, q) = F(q), ∀q ∈ V k
h , (8)

where

Ah(ph, q) =
∑
E∈Eh

∫
E

K∇ph · ∇q −
∑

γ∈ΓI
h∪ΓD

h

∫
γ

{K∇ph · n}[q]

+ β
∑

γ∈ΓI
h∪ΓD

h

∫
γ

{K∇q · n}[ph] +
∑

γ∈ΓI
h∪ΓD

h

αγ

hγ

∫
γ

[ph][q],
(9)
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F(q) =
∑
E∈Eh

∫
E

fq −
∑
γ∈ΓN

h

∫
γ

uNq + β
∑
γ∈ΓD

h

∫
γ

K∇q · npD +
∑
γ∈ΓD

h

αγ

hγ

∫
γ

pDq. (10)

Here αγ > 0 is a penalty factor for any edge γ ∈ Γh and β is a formulation parameter [13].
Depending on the choice of β, one ends up with the symmetric interior penalty Galerkin (SIPG)
for β = −1, the nonsymmetric interior penalty Galerkin (NIPG) for β = 1, and the incomplete
interior penalty Galerkin (IIPG) for β = 0.

Stability of the above DG scheme for a numerical pressure relies on the penalty factor. DG
numerical velocity can be calculated ad hoc. The DG velocity is locally mass-conservative, but
its normal component is not continuous across element boundaries. As pointed out in [2], this
leads to nonphysical oscillations, if the DG velocity is coupled to a DG transport solver in a
straightforward manner. This could make particle tracking difficult or impossible, if the DG
velocity is used in a characteristic-based transport solver.

The features and usefulness of the H(div) finite elements, especially, the BDM finite element
spaces motivate post-processing of the DG velocity via projection [2]. The post-processed
velocity has the following properties [2]:

(i) The new numerical velocity has continuous normal components on element interfaces;

(ii) The new numerical velocity reproduces the averaged normal flux of the DG velocity;

(iii) It has the same accuracy and convergence order as the original DG velocity.

Details on implementation of the DG schemes and their post-processing can be found in [2, 11].

2.3 Weak Galerkin (WG)

The WG finite element methods are developed based on the innovative concepts of weak gradi-
ents and discrete weak gradients [16]. Instead of using the ad hoc gradient of shape functions,
discrete weak gradients are established at the element level to provide nice approximations of
the classical gradient in partial differential equations.

The WG approach considers a discrete shape function in two pieces: v = {v◦, v∂}, the
interior part v◦ could be a polynomial of degree l ≥ 0 in the interior E◦ of an element, the
boundary part v∂ on E∂ could be a polynomial of degree m ≥ 0, its discrete weak gradient
∇w,nv is specified in V (E, n) ⊆ Pn(E)2(n ≥ 0) via integration by parts:∫

E

(∇w,nv) ·w =

∫
∂E

v∂(w · n)−
∫
E

v◦(∇ ·w), ∀w ∈ V (E, n).

For example, for a triangle T , WG(P0, P0, RT0) uses a constant basis function on T ◦, a constant
basis function on each edge on ∂T , and specifies the discrete weak gradients of these 4 basis
functions in RT0. Normalized basis functions for RT0 facilitate computation of these discrete
weak gradients [8, 10, 11], although small-size linear systems need to be solved in general.

The WG schemes for the Darcy equation rely on discretizations of (2). Let Eh be a triangular
or rectangular mesh, l,m, n nonnegative integers, Sh(l,m) the space of discrete shape functions
on Eh that have polynomial degree l in element interior and degree m on edges, S0h(l,m) the
subspace of functions in Sh(l,m) that vanish on ΓD. Seek ph = {p◦h, p∂h} ∈ Sh(l,m) such that
p∂h|ΓD = Q∂

hpD (projection of Dirichlet boundary data) and

Ah(ph, q) = F(q), ∀q = {q◦, q∂} ∈ S0h(l,m), (11)
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Ah(ph, q) :=
∑
E∈Eh

∫
E

K∇w,nph · ∇w,nq, F(q) :=
∑
E∈Eh

∫
E

fq◦ −
∑
γ∈ΓN

h

∫
γ

uNq. (12)

After obtaining the numerical pressure ph, one computes the WG numerical velocity by

uh = Rh(−K∇w,nph), (13)

where Rh is the local L2-projection onto V (E, n). But it can be skipped when K is a constant
scalar on the element. The normal fluxes are computed accordingly. The WG schemes are
locally conservative and produce continuous normal fluxes (in the integral form) [10, 11, 16].

2.4 Mixed Finite Element Methods (MFEM)

The mixed finite element schemes for the Darcy equation are based on discretizations of the
mixed variational form (4). A pair of finite element spaces (Vh,Wh) are chosen such that Vh ⊂
H(div,Ω) for approximating velocity and Wh ⊂ L2(Ω) for approximating pressure and together
they satisfy the inc-sup condition. Among the popular choices are (RT0, P0), (BDM1, P0) for
triangular meshes and (RT[0], Q0) for rectangular meshes [10, 11].

For a rectangular or triangular mesh Eh, denote Uh = Vh ∩HuN ,N (div; Ω) and V 0
h = Vh ∩

H0,N (div; Ω). A mixed FE scheme can be stated as: Seek uh ∈ Uh and ph ∈Wh such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
E∈Eh

∫
E

K−1uh · v −
∑
E∈Eh

∫
E

ph(∇ · v) = −
∑
γ∈ΓD

h

∫
γ

pD(v · n), ∀v ∈ V 0
h ,

−
∑
E∈Eh

∫
E

(∇ · uh)q = −
∑
E∈Eh

∫
E

fq, ∀q ∈Wh.
(14)

For implementation of (RT0, P0), the edge-based basis functions for Vh can be used in
computation and assembly of element matrices [10, 11]. A symmetric indefinite linear system
is solved. This is taken care by Matlab backslash, although it is nontrivial behind the scene.

An obvious advantage of the MFEM schemes is the automatic local mass conservation
(obtained by taking test function q = 1 in (14) 2nd equation) and normal flux continuity
(built in the construction of H(div) finite element spaces). It is interesting to observe certain
equivalence between the MFEM schemes and the WG finite element schemes [10].

3 Design and Implementation of DarcyLite

DarcyLite is implemented in Matlab, which is a popular interpretative language. Although it is
different than compilation languages like C/C++ or Fortran, Matlab is very efficient in matrix
or array operations, since its core was implemented mainly in Fortran. This also means that
Matlab arrays are stored columnwise. The integrated development environment and graphics
functionalities offered by Matlab are very helpful for educational purposes.

The above observations guide our overall design of DarcyLite:

• Code modules and separation of tasks ;

• Minimization of function calls ;

• Columnwise storage and access for full matrices or arrays ;
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• Utilizing Matlab (i, j, s)-format for sparse matrices;

• Performing operations on a mesh for all elements simultaneously.

This section further elaborates on these ideas through a list of selected topics. Some data
structures and implementation techniques in DarcyLite share the same spirit as those in [1, 3].

3.1 Mesh Data Structure

Mesh information can be categorized as geometric (node coordinates, positions of element cen-
ters, etc.), topological (an element vs its nodes, adjacent edges of a given edge, etc.), and
combinatorial (the number of neighboring nodes of a given node, etc.). Some basic mesh data
are used by all types of finite element solvers, even though they use some derived mesh info in
different ways. Mesh data can be organized as

(i) Primary info such as the numbers of nodes/elements, node coordinates, an element vs its
nodes: NumNds, NumEms, node, elem

(ii) Secondary info such as an edge vs its vertices, an edge vs its neighboring element(s), an el-
ement vs its all edges: NumEgs, edge, edge2elem, elem2edge, LenEg, area, EmCntr

(iii) Tertiary info are more specific to particular finite element solvers. For instance, DG
needs to know what are the neighboring elements for a give element, MFEM and WG
need specific info on whether an edge is the 2nd edge of a given element. The info on the
(unit) normal vector of a given edge is also used by MFEM and WG.

For example, the geometric info about mesh node coordinates is organized as an array of size
NumNds*2, the topological info about triangular elements vs their vertices is organized as an
array of size NumEms*3. Shown below is a code fragment for computing all triangle areas based
on the columnwise storage in Matlab.

k1 = TriMesh.elem(:,1); k2 = TriMesh.elem(:,2); k3 = TriMesh.elem(:,3);

x1 = TriMesh.node(k1,1); x2 = TriMesh.node(k2,1); x3 = TriMesh.node(k3,1);

y1 = TriMesh.node(k1,2); y2 = TriMesh.node(k2,2); y3 = TriMesh.node(k3,2);

TriMesh.area = 0.5*abs((x2-x1).*(y3-y1)-(x3-x1).*(y2-y1));

Based on these three levels of mesh info, DarcyLite organizes mesh data as a structure that has
several dynamic fields. The fields can be easily added or removed. Code modules are provided
for mesh info enrichment (adding data fields at a higher level), see code modules

TriMesh_Enrich1.m, TriMesh_Enrich3.m, RectMesh_Enrich1.m, RectMesh_Enrich3.m

3.2 Implementation of Quadratures

Integrals on elements and element interfaces comprise a major portion of computation in finite
element methods. Although this looks like a simple issue, but code efficiency can be improved
when we adopt an unconventional approach. For example, in the WG(P0, P0, RT0) scheme for
the Darcy equation, one needs to compute the integrals

∫
T
f over all triangular elements. If a

K-point Gaussian quadrature is applied, then the conventional approach would be

∫
T

fdT ≈ |T |
K∑

k=1

f(αkP1 + βkP2 + γkP3)wk, ∀T ∈ Th,
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where (αk, βk, γk), wk(k = 1, . . . , N) are respectively the barycentric coordinates and weights
of the quadrature points. The order of summation and loop can be reversed:

GlbRHS = zeros(DOFs,1);

NumQuadPts = size(GAUSSQUAD.TRIG,1);

for k=1:NumQuadPts

qp = GAUSSQUAD.TRIG(k,1) * TriMesh.node(TriMesh.elem(:,1),:)...

+ GAUSSQUAD.TRIG(k,2) * TriMesh.node(TriMesh.elem(:,2),:)...

+ GAUSSQUAD.TRIG(k,3) * TriMesh.node(TriMesh.elem(:,3),:);

GlbRHS(1:NumEms) = GlbRHS(1:NumEms) + GAUSSQUAD.TRIG(k,4) * EqnBC.fxnf(qp);

end

GlbRHS(1:NumEms) = GlbRHS(1:NumEms) .* TriMesh.area;

3.3 Element-level Small Matrices and Mesh-level Sparse Matrices

Finite element schemes involve computation of element-level small-size full matrices, e.g., mass
matrices and stiffness matrices, and mesh-level large-size sparse matrices, e.g., the global stiff-
ness matrix. In general, we avoid using cell arrays of usual matrices, since they may be in-
efficient. Instead we use 3-dim arrays. For example, in the WG(P0, P0, RT0) scheme for the
Darcy equation, each triangle involves one WG basis function for element interior and three
WG basis functions for the edges. The discrete weak gradient of each of the four WG basis
functions is a linear combination of the three RT0 normalized basis functions [10]. We organize
these coefficients as a three-dimensional array

CDWGB = zeros(TriMesh.NumEms, 4, 3);

The interaction of the discrete weak gradients of the 3 basis functions results in a 3-dim array

ArrayGG = zeros(TriMesh.NumEms, 3, 3);

These element-level small full matrices are assembled into the sparse global stiffness matrix

DOFs = TriMesh.NumEms + TriMesh.NumEgs;

GlbMat = sparse(DOFs,DOFs);

Instead of using a loop over all elements, we utilize the (i, j, s)-structure in Matlab and the
mesh topological info:

for i=1:3

II = TriMesh.NumEms + TriMesh.elem2edge(:,i);

for j=i:3 % Utilizing symmetry

JJ = TriMesh.NumEms + TriMesh.elem2edge(:,j);

if (j==i)

GlbMat = GlbMat + sparse(II,II,ArrayGG(:,i,i),DOFs,DOFs);

else

GlbMat = GlbMat + sparse(II,JJ,ArrayGG(:,i,j),DOFs,DOFs);

GlbMat = GlbMat + sparse(JJ,II,ArrayGG(:,i,j),DOFs,DOFs);

end

end

end

See the following code modules for more details:

Darcy_WG_TriP0P0RT0_AsmSlv.m, Darcy_WG_RectQ0P0RT0_AsmSlv.m
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3.4 Enforcement of Essential Boundary Conditions

For CG and WG, Dirichlet boundary conditions are essential, but Neumann boundary con-
ditions are natural, see Equations (7,11). For MFEM, Neumann conditions are essential but
Dirichlet conditions are natural, see Equation (14). For DG, Dirichlet conditions are enforced
weakly [13] in the bilinear and linear forms, see Equations (8,9,10). Theoretically, a zero essen-
tial boundary condition corresponds to a nice subspace for the numerical solution in the finite
element scheme. For a non-zero essential condition, however, we usually use the terminology
“manifold” to accommodate the numerical solution. From the implementation viewpoint, to
enforce essential boundary conditions, we need to modify the global sparse linear system ob-
tained from a finite element scheme. There are basically two approaches, hard (“brutal”) and
soft (“gentle”). We illustrate the latter using a simple linear system.

Let {x1, x2} be unknowns that satisfy a linear system as follows[
A11 A12

A21 A22

] [
x1
x2

]
=

[
b1
b2

]
.

Assume x2 = c is the essential boundary condition. A brutal way is to modify the system to[
A11 A12

0 I

] [
x1
x2

]
=

[
b1
c

]
.

But this usually damages the symmetry in the original linear system. An alternative is to
consider solving A11x1 = b1 −A12c, which is a linear system with a smaller size and maintains
the symmetry of A11 shown in the original system. Note that[

b1 −A12c
∗

]
=

[
b1
b2

]
−
[

A11 A12

A21 A22

] [
0
c

]

involves a simple matrix-vector multiplication (using the original global coefficient matrix) and
we just need to take the first block in the final result vector. See the following code modules
for more details:

Darcy_CG_RectQ1t_AsmSlv.m, Darcy_WG_TriP0P0RT0_AsmSlv.m, Darcy_WG_RectQ0P0RT0_AsmSlv.m

3.5 Interface with Other Software Packages

DarcyLite focuses on solving flow and transport problems in the environment provided by
Matlab. It can import triangular meshes generated by other packages, e.g., PDE Toolbox and
DistMesh [12], which also run on Matlab. DarcyLite provides functions for triangular mesh
conversion from the aforementioned two packages.

Triangle is a popular triangular mesh generator developed in C. DarcyLite can read in
the mesh data files generated by Triangle in the so-called flat file transfer (FFT) approach.

3.6 Graphical User Interface (GUI) of DarcyLite

A graphical user interface (GUI) is provided with DarcyLite for demonstration and education
purposes. It was developed using Matlab built-in guide (graphical user interface development
environment). The GUI is based on the event-driven design principle and some techniques
in SENSAI [14] are adopted. The GUI has three parts as shown in Figure 1: Preparation,
Numerical method, and Presentation.
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Figure 1: A screen snapshot of the Graphical User Interface (GUI) for DarcyLite

I. Preparation. This part allows the user to specify details for a problem to be solved.

(A) A domain is defined, including the endpoints along the x- and y-axis. The default
settings suggest a rectangular domain with both axes starting at 0 and ending at 1.

(B) Specify the Darcy equation thru a hydraulic conductivity K and a source term f .

(C) Dirichlet and Neumann boundary conditions are specified. The two built-in options for
K, f , and boundary conditions are defined according to two popular test examples.

(D) A mesh is to be generated. The user can choose between a rectangular or triangular
mesh by specifying the numbers of uniform partitions nx, ny for the x, y-directions, respectively.

Default settings suggest nx = 20, ny = 20. The Show Mesh button pops up a figure window
for the user to check whether a correct mesh has been generated.

(E) Gaussian type quadratures (for edges, rectangles, and triangles) are chosen. The default
choices (5,25,13) are sufficient for most cases.

II. Numerical Method. This part of the GUI lists the four major types of finite element
solvers. The user can choose among Continuous Galerkin, Discontinuous Galerkin, Weak

Galerkin, or Mixed Finite Element Method. Then the user must click the Run Code but-
ton. A popup will confirm that the inputs from Part I are correct for the chosen finite element
solver. Otherwise, an error message will pop up.

III. Presentation. The checkboxes in this part allow the user to display any combination
of the numerical pressure and velocity profiles, local mass-conservation residual (LMCR), and
flux discrepancy across edges.
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4 A Transport Solver: Implicit Euler + Weak Galerkin

DarcyLite contains also finite element solvers for transport problems in 2-dim prototyped as⎧⎪⎨
⎪⎩

ct +∇ · (vc−D∇c) = f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ),

c(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),

c(x, y, 0) = c0(x, y), (x, y) ∈ Ω.

(15)

Here c(x, y, t) is the unknown (solute) concentration, v the Darcy velocity, D > 0 a diffusion
constant, f a source/sink term. There exist various types of finite element methods for transport
problems. Here we briefly discuss a numerical scheme that utilizes the implicit Euler for time-
marching and weak Galerkin for spatial approximation.

For simplicity, we assume Ω is a rectangular domain equipped with a rectangular mesh Eh
and a numerical velocity uh has been obtained from applying a finite element solver that is
locally mass-conservative and has continuous normal fluxes. The unknown concentration is

approximated using the lowest order finite element space WG(Q0, P0, RT[0]). Let C
(n)
h (n ≥ 1)

be such an approximation at discrete time tn, then there holds for n ≥ 1,∑
E∈Eh

(C
(n)
h , w)E −Δt

∑
E∈Eh

(uhC
(n)
h ,∇w,dw)E +Δt D

∑
E∈Eh

(∇w,dC
(n)
h ,∇w,dw)E

=
∑
E∈Eh

(C
(n−1)
h , w)E +Δt

∑
E∈Eh

(f, w)E .
(16)

An initial approximant C
(0)
h can be obtained via local L2-projection of c0(x, y) into the WG

finite element space.

The “Implicit Euler + Weak Galerkin” scheme has two nice properties:

(i) C
(n)
h |E◦ represents intuitively the cell average of concentration on any element E.

(ii) The scheme is locally and hence globally conservative. This is verified by taking a test
function w that has value 1 in one element interior but 0 in all others and on all edges.

The 2nd term on the left side of the above equation characterizes interaction of the flow (Darcy
velocity) and the concentration (discrete weak) gradient. The 3rd term is a symmetric term
similar to that in any elliptic problem. The 1st term on the right side represents the mass at
the previous time moment, whereas the last term depicts the source/sink contribution during
the time period [tn−1, tn].

5 Numerical Experiments

This section presents numerical results to demonstrate the use of DarcyLite. We consider an
example of coupled flow and transport. A numerical Darcy velocity is fed into the transport
solver discussed in the previous section.

For the Darcy equation, Ω = (0, 1)2, the hydraulic conductivity profile is taken from [7]
(also used in [10, 11]). There is no source. A Dirichlet condition p = 1 is specified for the left
boundary and p = 0 for the right boundary. A zero Neumann condition is set for the lower
and upper boundaries. The Darcy solver WG(Q0, P0, RT[0]) is used on a uniform 100 × 100
rectangular mesh (but for graphics clarity, Figure 2 Panel (a) shows results of 40× 40 mesh).
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For the transport problem (15), T = 0.5, D = 10−3, there is no source. An initial constant
concentration is placed in [0.1, 0.2] × [0.3, 0.7]. The RT[0] numerical velocity from the Darcy
solver is used in the IE+WG scheme (16) with a 100×100 rectangular mesh and Δt = 5∗10−4.

Figure 2 Panel (b)(c)(d) present numerical concentration profiles for time moments t =
0, 0.25, 0.5, respectively. It can be observed that the transport pattern reflects well the flow
features: (i) The upper part of the domain has stronger flow and hence the concentration front
in the upper part advances faster than that in the lower part. (ii) In Panel (d), in the middle of
the domain, an almost vertical transport path can be observed. This clearly reflects the strong
flow in the domain from position (0.4, 0.5) downward to position (0.5, 0.3), see Panel (a) also.

Note that the mass flux on the domain boundary is zero. It can be checked numerically

that the total mass in the domain
∑

E∈Eh C
(n)
h |E◦ |E| remains at 4.000 ∗ 10−2 for all discrete

time moments (t = 0 through t = 0.5 with increment 0.05). This verifies the mass conservation
property (ii) discussed in Section 4. However, there are small negative concentrations. Elimi-
nating oscillations in numerical concentrations of convection-dominated transport problems is a
nontrivial issue [9]. Particular treatments for the “Implicit Euler + Weak Galerkin” transport
solver are currently under our investigation.
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Figure 2: Example: Coupled Darcy flow and transport. (a) Numerical pressure and velocity. (b) Initial
concentration. (c) Concentration at time t = 0.25. (d) Concentration at time t = 0.5. Results for (c)(d) are
obtained using WG(Q0, P0, RT[0])(h = 10−2) and implicit Euler Δt = 5 ∗ 10−4.
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6 Concluding Remarks

DarcyLite is a small-size code package developed in Matlab for solving 2-dim flow and transport
equations. It will be extended to include 3-dim solvers and test cases.

For the flow equation, DarcyLite provides four major types of FE solvers (CG, DG, WG,
MFEM) on triangular and rectangular meshes. CG post-processing [5] and the enhanced
Galerkin (EG) [13] will be included later. For the transport equation, DarcyLite provides
solvers for both steady-state and transient problems. For the latter, it offers solvers of Eulerian
type and Eulerian-Lagrangian type [15]. For coupled flow and transport problems, solvers for a
2-phase model [8] are provided. DarcyLite is being extended to include more solvers that are
efficient, robust, and respect physical properties, e.g., local conservation, positivity-preserving.

Besides applications like petroleum reservoir and groundwater simulations, DarcyLite is
being extended to include flow and transport problems in biological media, e.g., drug delivery.

The URL for this code package is http://www.math.colostate.edu/~liu/code.html
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