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Abstract: Many viral capsids follow an icosahedral fullerene-like structure, creating a caged polyhedral ar-
rangement built entirely from hexagons and pentagons. Viral capsids consist of capsid proteins, which group
into clusters of six (hexamers) or five (pentamers). Although the number of hexamers per capsid varies de-
pending on the capsid size, Caspar-Klug Theory dictates there are exactly twelve pentamers needed to form a
closed capsid. However, for a significant number of viruses, including viruses of the Papovaviridae family, the
theory doesn’t apply. The anomaly of the Caspar-Klug Theory has raised a new question:“For which Caspar
and Klug models can each hexamer be replaced with a pentamer while still following icosahedral symme-
try?" This paper proposes an answer to this question by examining icosahedral viral capsid-like structures
composed only of pentamers, called pentagonal polyhedra. The analysis shows that pentagonal polyhedra
fall in a subclass of T, defined by P ≥ 7 and T = 1( mod 3).

Keywords: CA protein; capsid; icosahedral symmetry; pentamer; T-number

1 Introduction
A virus is an infectious agent that invades and infects a host through the release and replication of its genome
within thehost cell. Advances in virology and the design of antiviral therapeutics rely strongly onunderstand-
ing the viral replication cycle, the structures of the capsids, and the mechanisms that trigger their assembly
and disassembly. Understanding the structure of capsids is of utmost importance not only for the design of
new antiviral drugs, but also for many other applications in nanotechnology [7, 8, 11, 24].

All viruses contain at least two components: a nucleic acid genome and a protective protein shell, called
the capsid. The genome of a virus is either single or double stranded DNA or RNA. This genetic material
is covered by a capsid, which is made up of protein subunits called capsomeres. Depending on the overall
arrangement of these capsomeres, capsids have icosahedral, helical or complex symmetry [6, 17, 23]. Irre-
spective of their shape and size, the underlying theme is that the capsid structure is designed to contain and
protect the viral genome. The capsid interacts with the host cell during the infection process and delivers the
genome to the cell for replication of the virus.

Crick andWatson observed that the size of the packaged genomicmaterial is too small to encode formore
than a limited number of different capsid proteins and argued that icosahedral symmetry constraints on viral
capsid architecture are crucial to ensure the size economy of the viral genome [5]. It was later experimentally
shown that over half of known viruses follow this icosahedral symmetry. The basic principles defining the
formation of icosahedral viral capsids were outlined by Caspar and Klug [4] extending mathematical knowl-
edge to biological structures. The Caspar-Klug Theory is now a major tool in modern virology, geometrically
describing the locations of protein subunits in icosahedral capsids.
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Caspar-Klug Theory is a fundamental concept in virology with wide-ranging applications, such as image
analysis of experimental data and construction of assembly models. However, for a significant number of
viruses, including viruses of the Papovaviridae family, the theory doesn’t apply [2]. The Caspar-Klug Theory
correctly predicts the location of the capsid units, but predicts 12 pentamers (12 groups of five proteins) and
60 hexamers (60 groups of 6 proteins) rather than the known 72 pentamers. This structural puzzle has since
been solved by the tiling approach presented in [27]. This anomaly of the Caspar-Klug Theory has raised a
new question:“For which Caspar and Klug models can each hexamer be replaced with a pentamer while still
following icosahedral symmetry?"

The rest of this paper is organized as follows. Section 2 reviews the concepts behind the geometry of viral
capsids outlined by the Caspar-Klug Theory and the folding of plane nets (interchangeably referred to as a
lattice) to form icosahedral capsids. In Section 3 we discuss the icosahedral exceptions to the Caspar-Klug
Theory by examining the properties of pentagonal polyhedra, which are Caspar-Klug structures recreated
consisting of only pentamers. Section 4 concludes the paper with remarks.

2 Geometry of icosahedral capsids
The icosahedral viral capsids have been extensively studied due to their highly symmetric nature and oc-
currence. It has been confirmed experimentally that more than half of the virus species are found to exhibit
icosahedral capsids and their capsid structural organization are outlined by particular types of surface lat-
tices [17]. Caspar and Klug established a theory that defines a family of surface lattices that act as a blueprint
for describing this geometric structure of the icosahedral viral capsids [4].

2.1 Caspar-Klug Theory

The Caspar-Klug Theory (CK Theory) is built upon 60 identical subunits organized on the 20 triangles creating
the faces of an icosahedron. These icosahedral structures exhibit rotational symmetry: 5-fold symmetry at the
vertices, 2-fold through the edges and 3-fold through the center of each triangular face. Each triangular facet
can be divided into three symmetrically equivalent parts, called an icosahedral asymmetric unit (IAU), by the
3-fold symmetry axis.

Quasi-Equivalence. The simplest icosahedral structure has 60 chemically identical subunits, one per
IAU, interacting identically with the same environment around it. CK Theory indicated that when more than
60 subunits interact, which appears to be true for many spherical viruses, all subunits cannot have identical
environments yet can still follow icosahedral symmetry with slight but regular changes in their bonding.
When putting 60N units on the surface of a sphere, the highest order structure would arrange them in sets of
N units each. Yet the members within the sets will no longer be equivalently related. This lack of equivalence
between the subunits is solved by the theory of quasi-equivalence.

Crick and Watson proposed the physical principle that the same contacts between subunits are used re-
peatedly [5]. The assumption is that the capsid is held together by the same type of bond, though these bonds
will be slightly deformed to correspond to non-symmetrically related environments. Quasi-equivalence, then,
allows for the mathematical constraint of strict equivalence to be discarded while retaining the physical es-
sentials necessary to describe the bonding on identical units. This ensures the capsomeres are arranged in a
minimum energy configuration realized by quasi-symmetry packing arrangements. For example, a viruswith
240 capsomeres would contain four (240/60) types of bonding and four distinct environments for the sub-
units. The four types would not be equivalent but quasi-equivalent because their environments are similar
but not identical.

T-Number. The CK Theory enumerates the possible designs for icosahedral surface lattices by mapping
the unfolded 20 triangular faces of an icosahedron onto a two dimensional hexagonal lattice (shown Figure 3
left). It is assumed this lattice consists entirely of regular hexagons. Each vertex from the triangulation should
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fall in the center of a hexagon. Generating a closed structure requires curving the net and converting the
hexagons chosen by the triangulation vertices into pentagons. Complying with icosahedral symmetry, each
pentagon must be equidistant apart. The vector between a neighboring pair of pentagons must be a lattice
vector of the triangular net. This lattice vector is generated by a linear combination of the two basis vectors
for the hexagonal lattice

A⃗ = ha⃗1 + ka⃗2, (1)

where h and k are nonnegative numbers (but not both zero), shown in Figure 1. Since the pentagons are
equidistant, the (h, k) pair define all possible icosahedral surface lattice designs.

The triangulation number (T-number) is mathematically defined as the squared length of each triangle
edge, with full proof explained in [26]. It counts the number of symmetrically distinct but quasi-equivalent
triangular facets in the triangulation per face of icosahedron.

|A⃗|2 = h2 + hk + k2 =: T . (2)

For the case of T = 1, the icosahedron has 60 equivalent units sorted into twelve clusters of five proteins
(pentamers) with identical bonds. The larger icosahedra have groups of six proteins (hexamers) between the
pentamers and can be visualized as replacing the original triangular facets with larger equilateral triangles.
The number of triangle facets per face replacing the original one is the triangulation number. Each triangula-
tion number has a different organization of bonding, as defined by quasi-equivalence. This theory derives a
family of surface lattices, parameterized by T, corresponding to all possible planar embeddings of an icosa-
hedral surface onto a hexagonal grid.

The T-number refers to the organization of the geometric figure, not necessarily the structural compo-
nents of an individual virus. Quasi-equivalence specifies that the number of different environments should
equal the T-number. The exceptions to this rule are discussed in Section 3.When the correspondence is direct,
the T-number provides a strong descriptive tool for determining the number of subunits per viral capsid.

Euler’s Formula. Although the number of hexamers per capsid varies depending on the capsid size, CK
Theory dictates there are exactly twelve pentamers needed to form a closed capsid. This follows from the
Euler-Poincare characteristic, χ. For a polyhedron,

χ = f + v − e = 2, (3)

where v, e, and f are the number of vertices, edges, and faces respectively.
In a polyhedron composed only of Pent pentagons and Hex hexagons,

f = Pent + Hex. (4)

Counting each edge while traversing each face yields

2e = 5Pent + 6Hex. (5)

Three polygons must come together at each vertex. The only options are three pentagons, two pentagons and
one hexagon, or one pentagon and two hexagons. In each case there are three edges terminating a vertex.
Counting each edge while traversing each vertex yields

2e = 3v. (6)

It follows that

χ = f + v − e = (Pent + Hex) +
(︂
5Pent + 6Hex

3

)︂
−
(︂
5Pent + 6Hex

2

)︂
= 2 ⇒ Pent = 12. (7)

With each capsid containing exactly 12 pentamers and 60T protein subunits, the number of hexamers
(Hex) also relies on the T-number:

Hex = 10(T − 1). (8)
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2.2 Folding of Plane Nets

Beginning with a flat hexagonal lattice consisting entirely of regular hexagons, a closed structure can be
generated by curving the net and converting exactly 12 hexagons to pentagons. The pentagon locations are
defined by the vertices of the triangulation with a generating vector defined in Equation 1. The pentagons
are formed by cutting a 60∘ wedge from a hexagon and rejoining the cut edges such that a convex five-sided
polygon is formed, whose center no longer lies on the hexagonal plane, as shown in Figure 1 right. This is
equivalent to joining five one-sixth equal parts of a hexagon.

Algorithm for CK Folding.

1. Start with a flat hexagonal lattice;
2. Triangulate 20 equilateral triangles with side length

√
T such that all vertices lie in the center of a

hexagon;
3. Join faces along adjacent edges, such that the three-dimensional triangulation vertices lie in the cen-

ter of a pentagon and the interior angle defect of each pentagon is less than 180∘; All vertices of the
polyhedron will point outwards, away from the interior of the shape;

4. Join the two sides so that their vertices of intersection lies in the center of pentagons.

Convexity. It is possible to create multiple non-convex icosahedra with the 20 triangular net, where up
to three vertices lie in the center of the polyhedron rather than projected onto the surface of a sphere. In this
case, a interior angle defect of at least one pentagon would be greater than 180∘. On the other hand, there is
a unique convex folding since the curvature along the net is given only by the pentamers [16] and a folding
of this type would require each pentagon to have an interior angle defect of less than 180∘.

Dual Model. The convex triangulation folding gives descriptive information on the location of the pen-
tamers and the number of hexamers between them on the triangular faces. Though, this folding does not give
an accurate visual of viral capsids since it implies the pentamers are convex (Figure 1 right). An alternative
visualization of viral capsids is given by the pentagonal dodecahedron, where the pentamers and hexamers
are flat and the curvature is formed along the edges of the hexamers and pentamers, rather than the edges of
the triangulation (Figure 3 right).

The triangular icosahedron has 12 pentagonal vertices and 20 triangular faces. Each triangle has a 3-fold
axis in its center of its face, a 2-fold axis at the center of its edge, and a 5-fold axis through the 12 vertices.
The related dual structure, the pentagonal dodecahedron, shares the same symmetry elements but has a
complementarymorphology: 5-fold axes through the pentagonal faces, 3-fold through the vertices, and 2-fold
through the edges. Both of these shapes have icosahedral symmetry, as do spherical viruses, whose shape
lies between these two extremes. The icosahedron can also be represented as a spherical tiling and projected
onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas
or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

Previous models have used the icosahedron to represent viral capsid structures with an assumed equiv-
alence to the pentagonal dodecahedron and spherical tiling. The distinction between spherical or polyhe-
dral shape is of no fundamental importance [4], each model correctly calculates the position and number
of hexagons and pentagons per (h, k) pair, though the measurement approximations are dependent on the
model chosen.

For example, assuming the icosahedral foldingmodel the surface area can be calculated by summing the
area of the 20 triangles

SAI = 20
(︂√

3
4 |A⃗|2

)︂
:= 15

√
3Ta2(nm2), (9)

where a multiple of
√
3a gives the conversion between lattice and nanometer (nm), and a is the length of a

protein [26]. A similar calculation will show that the surface area formula for the dodecahedron is

SAD := 12
(︃
a2
√︀
5(5 + 2

√
5)

4

)︃
+ 10(T − 1)

(︂
3a2

√
3

2

)︂
(nm2). (10)
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It follows that SAI > SAD for all (h, k) and a. The difference between SAI and SAD is exactly twelve times
the difference between the areas of the pentamers in each model. For SAI , the pentamer area is obtained by
subtracting one-sixth of the area of the hexagon,while SAD uses the area of a regular pentamer. It is important
to note that similar discrepancies can occur with other common measurement formulas.

Chirality. The smallest icosahedron has 20 equilateral triangular faces defined by (1,0) or equivalently
(0,1). Larger icosahedral viruses follow the icosadeltahedral structure with 20T facets, where T is the trian-
gulation number. The convex folding is unique for each pair (h, k) but not unique for T. For example, (7, 0)
and (5, 3) both give T = 49 but produce different capsid organizations. It should be noted that although (7, 0)
and (0, 7) produce identical capsids, (5, 3) and (3, 5) produce enantiomorphous structures. This property is
further explained with the addition of the P class, which is a subset of T, summarized below and described
in detail in [4, 17, 25].

Let f = gcd (h, k). Then h = h0f , k = k0f , and

T = h2 + hk + k2 (11)
= h20f 2 + h0k0f 2 + k20f 2 (12)
= (h20 + h0k0 + k20)f 2 (13)
= Pf 2 (14)

for
P = h20 + h0k0 + k20. (15)

All icosahedra can be described by one of three classes based on their P-number: P = 1, P = 3, or P ≥ 7.
The P class and lattice parameters h and k are also used to define the chirality, which is defined on the lattice
as the angle between the basis vector a⃗1 and the generating vector A⃗, illustrated in Figure 2. This produces a
right triangle with base length (h + k/2), height (k

√
3/2), and hypotenuse (

√
T).

The chiral angle θ can be defined as

cos θ = 2h + k
2
√
T

, sin θ = k
√
3

2
√
T
, tan θ = k

√
3

2h + k . (16)

It is easy to see for the first two P classes, chirality is not formed. For P = 1, the T-numbers are based
along the h-axis or k-axis (T = h2 = 1, 4, 9, etc...), with h > 0, k = 0 or h = 0, k > 0 respectively. These
icosahedra have lattice lines that run parallel to the edges of the triangular facet, which can be considered a
higher order icosahedron, as shown in Figure 4 (h, 0) = (0, h) (blue). If h > 0 and k = 0 then θ = 0∘ and the
lattice lines correspond to the h-axis. Similarly if h = 0 and k > 0 then θ = 60∘ and the lattice lines correspond
to the k-axis. Capsid structures with θ = 0∘ or 60∘ have hexamers arranged as rings, analogous to the zigzag
configuration of carbon nanotubes (CNTs), shown in Figure 4 middle left.

When P = 3, h = k and the T-numbers are based along the line that bisects the h- and k-axes (T = 3h2 =
3, 12, 27, etc...). This yields lattice lines that bisect the angles between the edges of the icosahedral facet,
rotating the facets by θ = 30∘, as shown in Figure 4 (h, h) (cyan). This class has a zigzag arrangement of
hexamers analogous to the armchair configuration of CNTs [17], shown in Figure 4 top left. P = 1 and P = 3
are the only classes which produce icosahedra with planes of symmetry.

Polyhedra with P ≥ 7 are skewed, including all other allowed T-numbers (7, 13, 19, 21, etc...). The lat-
tice lines are not symmetrically disposed with respect to the icosahedral facet and do not produce uniquely
defined T numbers. This third case describes the class in which (h, k) and (k, h) produce enantiomorphous
capsids, existing in right- and left-handed forms, as shown in Figure 3. For h > k > 0 the chiral angle falls
between the h-axis and the line that bisects the h− and k− axes producing a left-handed (laevo) form with
0∘ < θ < 30∘, Figure 3 top. Alternatively, for 0 < h < k, the angle falls between the bisecting line h = k and the
k−axis producing a right-handed (dextro) form 30∘ < θ < 60∘, Figure 3 bottom. An example of a virus struc-
ture with a skewed icosahedral lattice is the widely studied bacteriophage HK97 (T = 7d) [19]. The properties
of these three classes of P-numbers are summarized in Table 1.
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Figure 1: Two basis vectors a⃗1 , a⃗2 and one generating vector A⃗ for a hexagonal lattice. In this illustration, h = 2, k = 2 and
hence T = h2 + hk + k2 = 12. The starting and ending points of the generating vector A⃗ denote the two hexagons replaced by
pentagons when the lattice is folded into an icosahedron.

Figure 2: Chiral angle is defined as the angle between the basis vector a⃗1 (blue) and the generating vector A⃗ (red). This pro-
duces a right triangle with base length (h + k/2), height (k

√
3/2) and hypotenuse (

√
T). Shown for (h, k) = (1, 3) and

T = h2 + hk + k2 = 13.
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Figure 3: Top: A laevo lattice (h > k) and folding with (h, k) = (2, 1) and T = h2 + hk + k2 = 7. Bottom: A dextro lattice (k > h)
and folding with (h, k) = (1, 2) and T = h2 + hk + k2 = 7. The red dotted lines indicate the chiral angle. Pentagons are shown in
gray.

Figure 4: Left: Illustrations of chirality on hexagonal tubes. From top to bottom: zigzag, armchair, chiral; Right: Illustrations of
chirality and classes of P-number on a hexagonal lattice. Top: Zigzag arrangement of constituent equilateral triangles seen for
(h,0) and θ = 0∘ (P = 1) along h-axis. Armchair arrangement seen for (h,h) with θ = 30∘ (P = 3). Bottom left: Location of
(h, k) pair based on P-number. Chiral arrangement observed for P ≠ 1 and P ≠ 3. Laevo configuration seen for h > k where
0∘ < θ < 30∘ and dextro configuration for k > h where 30∘ < θ < 60∘. Bottom right: Triangular facets for P = 1 (blue) and P = 3
(cyan).
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Table 1: Summary of icosahedra classified by their P-number. P = 1 and P = 3 are classes which produce icosahedra with
planes of symmetry and chirality is not formed. Polyhedra with P ≥ 7 are skewed, existing in right- and left-handed forms.

Class P-number Generating Vector T-number
Class I. P = 1, (h, 0) or (0, k), T = h2 or T = k2

Class II. P = 3, (h, h), T = 3h2

Class III. P ≥ 7, (h, k), T = f 2P

3 Pentagonal Polyhedra
For folding the surface of a convex polyhedra, there are two types of plane nets without mirror symmetry
that maintain the nearest neighbor pattern. These two plane lattices are the square and equilateral triangle
nets which have either four- or six-fold rotational symmetry. The square net can only be folded into a cube.
The triangular net can be folded into an icosahedron, octahedron or tetrahedron if 5, 4, or 3 of the triangular
facets join at a polyhedron vertex and are disposed symmetrically.

To fold the icosahedron, the equilateral triangular net is vital with 5-fold axes through the twelve vertices,
3-fold axes on the triangular face centers, and 2-fold axes at the edge centers. This underlying geometrical re-
quirement forces the structure units to arrange into rings of 5 and6 [4]. However, the clustering into pentagons
and hexagons is not a geometrical necessity, but a way of providing maximum contact in a close-packed ar-
ray between the structure units and the surface of the shell. For example, it is thought that the icosahedral
Bluetongue virus (BTV) capsid is composed of trimers, rather than hexamers [9].

The smallest pentagonal polyhedron is the pentagonal dodecahedron, which corresponds to T = 1 (12
pentamers with no hexamers). It was thought this should be the only case, as illustrated by Equation 8.
Though recent discovery has shown the existence of a higher order pentagonal polyhedra in viral capsids
[2]. The rest of this section mathematically defines the properties of pentagonal polyhedra.

3.1 The 72 Pentamer Case

There are icosahedral viruses like those found in the papillomavirdidae and polyomaviridae families which
do not follow the CK Theory predictions for their capsid organization. Although these virions seem to follow
a T = 7d capsid structure, they are composed of exactly 72 pentamers rather than the 12 pentamers and 60
hexamers predicted by the CK Theory [2]. This puzzle has been solved by Twarock’s theory which uses a tiling
approach to replace the hexagonal latticewith a Penrose-like tiling of kites and rhombi [27, 28]. This has since
been expanded in [12–14], making use of the affine extensions of Lie algebras.

Tiling theory still assumes that the overall structure of the capsid is icosahedral, though the constraint
of the hexagonal lattice is replaced by allowing a tiling of any (or multiple) building block(s) that preserve
the overall symmetry. This theory no longer follows the principle of quasi-equivalence, but a generalized
principle which states that protein subunits are located only on the corner of tiles with the same angle [27].
This ensures identical proteins occupy identical sites on the tiles.

CK Theory only considers surface lattices that are induced by hexagonal lattices, such that the pentamers
are not considered as being formed before folding, but are achieved only by the folding. In other words, the
formation of pentamers allows the curvature needed to construct a three-dimensional shape [16]. Yet, for the
Papilloma- and Polyoma-viridae families, the capsid is constructed from a pentagonal lattice which violates
Equation 5, since the edges of the pentagonal lattice are not shared like the edges in the hexagonal lattice
which constructs the T = 7d structure. This is simply illustrated in the T = 1 case, where the pentagonal
lattice has “holes" or spacing (Figure 5, gray) in two-dimensions, yet removing them allows the curvature
needed to construct a three-dimensional shapewhen folding the orangepentagons. Similarly for larger values
of T, the requirement of a closed net is relaxed. This allows for “spacing" between each pentamer not formed
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Extension of Caspar-Klug theory to higher order pentagonal polyhedra | 9

by the triangular icosahedral folding, in the formof a pentagonal netwhere the pentagons do not share edges.

For the 72 pentamer case, the T = 7d structure accurately predicts the 12 pentamers formed by closure of
the triangular lattice, with 60 additional pentamers along the surface in the exact location of the predicted
60 hexamers. This folding still provides icosahedral symmetry: 5-fold symmetry guaranteed by the twelve
triangle vertices, with 3-fold on the triangular face centers and 2-fold on the edges maintained by a specific
pentamer orientation. Further details on the orientation of the pentamers for the Papilloma- and Polyoma-
viridae families are explained by the tiling theory in [27, 28], explained in the following section and illustrated
in Figure 6.

3.2 Higher-Order Pentamer Case

Allowing spacing of pentamers creates a new class of potential capsid structures made of only pentamers
following icosahedral symmetry. These structures preserve the underlying CK structure, using a triangular
net projected onto a hexagonal lattice with 5-fold axes on the vertices, 3-fold axes on the triangular faces,
and 2-fold axes on the triangular edges. After folding, each hexagon is replaced by pentagonswithout sharing
edges. This cannot be done with all T-number constructions, but only a subclass of P ≥ 7 as summarized in
Table 2 and described by the following Theorem.

Table 2: Summary of T- and P-number requirements for Penta-Hexa (polyhedra composed only of pentagons and hexagons)
and Penta Polyhedra (polyhedra composed only of pentagons). Only one subclass of P ≥ 7, with T = 1( mod 3), is able to
produce Penta Polyhedra.

T-number Penta-Hexa Polyhedra Penta Polyhedra
T = 0( mod 3) P = 3,P ≥ 7 impossible
T = 1( mod 3) P = 1,P = 3,P ≥ 7 T = 1,P ≥ 7
T = 2( mod 3) impossible impossible

Theorem 3.1. If each hexagon in a CK icosahedral structure can be replaced by a pentagon andmaintain icosa-
hedral symmetry, then P ≥ 7 and T = 1( mod 3).

First we examine the P classes in which pentagonal polyhedra are not possible. In class P = 1, the T numbers
are based along the h-axis or k-axis (T = h2 = 1, 4, 9,etc...), with h > 0, k = 0 or h = 0, k > 0, respectively. This
produces lattice lines that runparallel to the edges of the triangular facet, cutting the hexagons along the edge
exactly in two (shown Figure 4, bottom right (h, 0) = (0, h) blue triangle). If one were to replace the hexagons
with pentagons, the triangular edge would then cut a pentagon in half, causing a loss of 2-fold symmetry
in the center of the edge required by the icosahedral structure. Therefore structures retaining icosahedral
symmetry and following the P = 1 class, larger than T = 1, cannot be composed of only pentagons.

Class P = 3 is defined by the lattice pair (h, h). The triangular face of these icosahedra have a centroid of
G(0, h) which lies in the center of a hexagon (shown Figure 4, bottom right (h, h) cyan triangle), according
to Lemma 3.2 below. Replacing each hexagon with a pentagon would place a pentagon directly in the center
of the triangular face, causing a loss of 3-fold symmetry. This shows that structures following the P = 3 class
cannot be composed of only pentagons.

Lemma 3.2. For a CK icosahedron, (h−k) is divisible by 3 iff the centroid of the triangular facet lies in the center
of a hexagon on the underlying lattice.
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10 | Farrah Sadre-Marandi and Praachi Das

Figure 5: Illustration of a pentagonal lattice with “holes" or spacing (gray). Cutting the T = 1 lattice (orange) produces a three-
dimensional dodecahedron.

Figure 6: Illustration of the T = 7d capsid structure for the Papilloma- and Polyoma-viridae families. 12 pentamers are formed
by the closure of the triangular lattice (dark blue). 60 additional pentamers fall along the surface in the exact location of the
Caspar-Klug predicted 60 hexamers (cyan).
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Proof of Lemma 3.2. Consider an arbitrary triangular face of a CK icosahedron with vertices A(0, 0), B(h, k)
and C(−k, h + k). Then the centroid of the triangular face is given by

G
(︂
h − k
3 , h + 2k3

)︂
. (17)

(i) If (h − k) is divisible by 3, then so is (h + 2k). Then G(m, n), with m, n ∈ Z not both zero, and the lattice
vector from (0, 0) to the centroid is given by G⃗ = ma⃗1 + na⃗2. Thus G lies in the center of a hexagon.

(ii) Let the centroid of the triangular face lie in the center of a hexagon in the underlying hexagonal
lattice. Then the lattice vector from (0, 0) to the centroid is a linear combination of the basis vectors given by
G⃗ = ma⃗1 + na⃗2 with m, n ∈ Z not both zero, and the centroid is defined as G(m, n). Thus m = (h − k)/3 and
n = (h + 2k)/3. But m, n ∈ Z, therefore (h − k) is divisible by 3.

It remains to examine the P ≥ 7 class. The 5-fold symmetry on each vertex is guaranteed by the construction of
the icosahedron using 20 equilateral triangles, since these pentagons are achieved by the folding. The 2-fold
symmetry on the edges is also possible since no edge in the triangulation of the P ≥ 7 class can lie parallel to
the lattice lines (explained in Section 2).

An underlying property of the icosahedral triangular face on a hexagonal lattice is that the triangle ex-
hibits 3-fold rotational symmetry through the center of its face. If the center of the triangle fell on a hexag-
onal edge, 3-fold symmetry would be lost. This means the center of the triangle can only lie in the center
of a hexagon or on a hexagonal vertex. Thus for pentagonal polyhedra, the 3-fold symmetry requirement is
possible only when the center of the triangular face does not land in the center of a hexagon.

Through the discussion above, it is sufficient to prove Theorem 3.1 by the following Lemma.

Lemma 3.3. The center of the triangular face lands on a vertex of the underlying hexagonal lattice iff T = 1(
mod 3).

Remark 3.4. It is clear by
4T = 3(h + k)2 + (h − k)2, (18)

that the triangulation number is either T = 0( mod 3) or T = 1( mod 3). Meaning, either T or T − 1 is a
multiple of 3.

Proof of Lemma 3.3. (i) Consider an arbitrary triangular face of a CK icosahedronwith vertices A(0, 0), B(h, k)
and C(−k, h+k). Then the centroid of the triangular face is givenbyEquation 17. Let the center of the triangular
face be a vertex. Then by Lemma 3.2, (h − k) - 3 and (h − k)2 + 3hk = T - 3. Therefore, if the center of the
triangular face lands on a vertex of the underlying hexagonal lattice, then T = 1( mod 3).

(ii) Let the centroid of the triangular face lie in the center of a hexagon in the underlying hexagonal lattice.
By Lemma3.2, (h-k) is divisible by 3. Then (h−k)2+3hk = T is also divisible by 3 and T = 0( mod 3). Therefore
if T = 1( mod 3) then the center of the triangular face lands on a vertex of the underlying hexagonal lattice.

Given the CK construction, the pentagonal polyhedra will have 5-fold symmetry through each triangular ver-
tex. 2-fold symmetry on the edges is given by P ≥ 7 and 3-fold symmetry on the triangular face is possible
when the center of the triangular face lands on a vertex of the underlying hexagonal lattice, given by T = 1(
mod 3). To demonstrate the pentagonal polyhedra class, we consider the orientation of the pentamers of the
T = 7d capsid structure for the Papilloma- and Polyoma-viridea families (illustrated in Figure 6).

The hexagonal lattice denotes the hexamer protein locations such that the six proteins are joined at the
center while each protein points to one of the six vertices of the hexagon (See [27], Figure 5). In other words,
exactly one protein lies between the basis vectors a⃗1 and a⃗2 on the two-dimensional lattice. Though on a
pentagonal lattice, a⃗1 would bisect the protein cluster since one of the pentamer proteins must point to the
center of a hexagonal edge tomaintain symmetry (for example see Figure 6 right, for orientation of a pentamer
inside of a hexagon).

Proteins fromneighboring pentamers, located inside of the icosahedral CK triangle, create a grid (or tiling
[27]) (for example see Figure 6 left). This protein orientation ensures themaximumcontact between pentamer
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proteins, as described in the CK theory [4]. Since the protein orientation depends on the lattice vectors, the
icosahedral CK triangle maintains 5-fold symmetry through each vertex, 2-fold symmetry on the edges and
3-fold symmetry on its face.

4 Discussion
Most viral capsids have been shown to exhibit an icosahedral fullerene-like structure, following icosahedral,
helical, or complex symmetry. The Caspar-Klug Theory correctly predicts the arrangement of proteins for a
majority of icosahedral capsids. However for a number of viruses following a pentagonal polyhedron struc-
ture, including viruses of the Papovaviridae family, the theory does not apply. The analysis introduced here
shows that pentagonal polyhedra fall in a subclass of icosahedral viral capsid-like structures with P ≥ 7 and
T = 1( mod 3). Viral capsids have already been found that follow the pentagonal polyhedron structure with
T = 1 and T = 7 [2]. It will be interesting to see if larger pentagonal polyhedron capsid structures emerge as
mutations or with imminent virology discoveries. Future line of work includes investigating the assembly of
pentagonal polyhedra and the physical properties of chirality required for drug design and development [3].

The CK Theory and pentagonal polyhedron structures still do not define all of the virus species found
to have icosahedral symmetry. The Geminiviridae family has capsids composed of two incomplete T = 1
icosahedra joined together to form twinned particles [15]. The L-A virus is considered to have T = 2 structure
composed of 22 pentamers, following a T = 1 icosahedral symmetry since the 12 pentons are composed of
five sets of two Gag proteins [22]. There are also icosahedral viral capsids with non-identical subunits, such
as the Adenovirus (AdV) capsid with four types of minor proteins classified as a pseudo T = 25 [18] and the
Picornaviruses with pseudo T = 3 [25]. Many viruses have tubular, lozenge-like, or coffin shaped capsids
which models for each have been proposed in [10, 17, 20, 21, 23, 26] and references therein. Models for the
mature HIV-1 conical cores have been described in [23, 26].

The pentagonal polyhedron capsid-like structures presented in this manuscript, and models referenced
above, could act as blueprints for novel antiviral drugs and nanotechnology applications. While viruses are
mostly known for their destructive effects, they have proven to have a number of benefits as well. Under-
standing the structure of capsids and similar structures is of utmost importance not only for the design of
new antiviral drugs, but also for applications in nanotechnology. For example, the construction of protein
cages from viral proteins can be used as gene vectors, transporting generic material into cells for therapeutic
purposes. The particles provide containers preventing premature degradation of drugs,which combinedwith
the high host-cell specificity of viruses, can deliver these drugs to the specific targeted tissues [7, 8, 11, 24].
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